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Fundamentals of Electrical Measurements 

 

 
2.1 Main methods of measurement 

The Oxford Dictionary explains the term measure 

as “ascertain the size, amount or degree of (something) 

by using an instrument or device marked in standard 

units or by comparing it with an object of known size” 

(from the Latin mensurare – to measure)
1
.  

More professional sounds following definition: The 

measurement is a cognitive process of gathering the 

information from the physical world. In this process a 

value of a quantity is determined (in defined time and 

conditions) by comparison it (with known uncertainty) 

with the standard reference value.
2
  

In this definition we can emphasize several important 

factors. We see that always exists standard of 

measured value. It is not necessary to include such 

standard to the measuring device because this device 

can be calibrated (scaled, tested, standardized) by 

comparison with more accurate device. But always on 

the top of this pyramid we can find international 

standard of this physical value. This problem we call as 

traceability – unbroken chain between main standard 

and individual measuring instrument (this problem is 

discussed later in more details). 

Other important factor is the uncertainty of 

measurements. We never know estimated value without 

any error (although it can be sufficiently small). 

Therefore we always are obliged to consider accuracy 

of measurement. Also this problem is discussed in 

more details later. 

Another important factor is statement that we 

perform measurement in defined time and conditions. It 

means that we should take into consideration that many 

investigated processes are dynamic – changing in time. 

Moreover measurements are not performed in isolated 

                                                
1
 The most of terms related to measurements are defined by “International 

Vocabulary of Basic and General Terms in Metrology – ISO VIM”, 

International Organization for Standardization ISO, Geneva, 1993 (revised 

edition 2004). 
2
 The International ISO Vocabulary proposes following definitions: 

Measurement is a process of experimentally obtaining information about 

the magnitude of a quantity. Measurement implies a measurement 

procedure based on a theoretical model. In practice measurement 

presupposes a calibrated measuring system, possibly subsequently verified. 

The measurement can change the phenomenon, body or substance under 

study such that the quantity that is actually measured differs from the value 

intended to be measured and called the measurand. 

environment. They can be disturbed by external 

interferences (for example external electromagnetic 

field) as well as the variation of external conditions (for 

example influence of temperature). 

In this chapter we discuss still other factor – 

measurement is a comparison with other more 

accurate (assumed as standard) value. This process of 

comparison can be realized in different ways: 

- by compensation (subtraction) (Figure 2.1a), 

- by comparator principle (Figure 2.1b), 

- by substitution (Figure 2.1c) 

or very often: 

- by conversion (Figure 2.1d). 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.1 

Various methods of comparison of two values: a) compensation, b) 

comparatopr, c) substitution, d) conversion. 
 

The first method is obvious. We substrate from 

measured value X the standard value Xs and observe the 

difference (using null indicator NI). When both values 

are exactly the same (compensated each other) the null 

indictor points zero. We can simply perform such 

operation by changing reference value and observing 

null indicator. 

The example of the compensation measuring device 

known as potentiometer (the main measuring 

instrument in old times) is presented in Fig. 2.2. The 

measured voltage Ux is compensated by voltage drop 

IsRx on adjustable resistor R. The measurement was 

performed in two steps. In the first step the standard 

voltage source Us (for example Us = 1.01805 V) was 

connected instead of measured voltage. If we adjust the 

resistor to the value defined by standard voltage (in our 

case Rs = 1.01805 k) and calibrate the current Is to 

obtain zero signal on null indicator we can say that we 
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have standard value of current (in our case 1 mA). In 

the next step we can precisely determine measured 

voltage from the value of the resistor Rx (of course in 

this second step we again look for zero state of null 

indicator). 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.2 

The principle of operation of the potentiometer device. 

 

The conditions of equilibrium are as follows: 
 

s s sI R U 0                               (2.1) 

 

for the first step, and: 
 

s x xI R U 0                                (2.2) 

 

Thus 
 

x s x

s

1
U U R

R
                               (2.3) 

 

Why we had to perform such complicated operation 

instead of simply compensation two voltages? Because 

a long time ago we did not have adjustable voltage 

source. In contrary the resistance is very easy to adjust 

and moreover we are able to prepare it with extreme 

high accuracy.  

Presented potentiometer device exhibits two very 

important advantages. First of all because accuracy 

depends only on the accuracy of resistor Rx (see Eq. 

2.3) we are able to determine the voltage also with high 

accuracy (indeed the potentiometer devices were earlier 

the most accurate “standard” measuring instruments – 

with accuracy even better than 0.01%)
3
. 

The second important advantage lies in the idea of 

compensation. In measurements the best case is if 

measuring device does not influence estimated result. 

In the case of measurement of voltage it means that 

voltmeter should exhibit resistance as high as possible. 

Because in the state of equilibrium a null indicator 

                                                
3
 By measurement of voltage drop on standard resistor we can 

determine current with high accuracy by using voltage potentiometer. 

And next knowing current and voltage we were able to determine 

resistance. 

informs that we do not consume current from measured 

source it means that the resistance is close to infinity. 

Recently an old potentiometer is in museum. But this 

idea is still valid due to its important advantages (high 

accuracy and high input resistance). Figure 2.3 presents 

modern realization of the compensation principle. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.3 

The autocompensation device. 
 

A long time ago as null indicator commonly was 

used very sensitive (specially designed) pointing 

devices, known as galvanometer. Recently 

galvanometer can be easy substituted by very sensitive 

amplifier.   

In the compensation circuit presented in Figure 2.2 

the balance process was performed manually. In 

modern electronic circuits this compensation can be 

realized by feedback. An example is presented in 

Figure 2.3. When input voltage is equal to zero also 

input voltage of the amplifier (as well as output 

current) are equal to zero. When input voltage increases 

it causes that in the input of amplifier appears (the 

same output current increases). This current results in 

voltage drop on resistance Rs. Due to feedback this 

voltage drop is subtracted from the input voltage and 

the equilibrium condition is:  
 

x out sU I R 0                            (2.4) 

 

And next: 

out x

s

1
I U

R
                                (2.5) 

 

In the equilibrium the circuit is auto-compensated. It 

means that we profit all advantages of compensation 

principle: very high input resistance and very high 

accuracy (transfer coefficient K = out/in depends only 

on the value of resistor Rs that we can prepare with 

high accuracy). 

But feedback introduces also many additional 

advantages. In Eq. 2.5 does not exist such factors as 

amplification coefficient Ku of amplifier as well as load 
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resistor R0. It means that changes of amplification (for 

example by aging or by influence of temperature) do 

not influence the accuracy. If load resistance also does 

not influence the accuracy we can assume that our 

measuring circuit acts as current source – we simply 

convert voltage into current. The current output signal 

is valuable taking into account signal transmission. 

During such transmission the resistance of connecting 

wires depends on the temperature changes what can 

influence the output signal. But if we have current 

output this signal does not depend on these changes of 

resistance.  

Other benefit of feedback is improvement of 

linearity. Every amplifier has nonlinear transfer 

characteristic out/in because for large signal we are 

close to saturation. As larger is input signal as larger is 

error of nonlinearity. But if we apply feedback the 

input signal of amplifier is close zero – thus we are far 

from nonlinear part of characteristics.  

In the device presented in Figure 2.3 we compensate 

two analogue values. But compensation principle is 

also very useful in digital circuits. In digital technique 

as null indicator commonly is used special amplifier 

known as comparator. The principle of operation of 

comparator is presented in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.4 

The principle of operation of the comparator. 

 

The comparator is a differential amplifier with output 

voltage Uout depending on the difference of two input 

voltages U1 and U2: 
 

 out u 1 2U K U U                     (2.6) 

 

When amplification coefficient Ku of amplifier is 

very large even small difference between two input 

voltages causes saturation of amplifier. Therefor this 

device is switching the output voltage between  

saturation voltages and this way is indicated zero 

voltage (if the second input is grounded - thus the 

second voltage is zero). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.5 

The digital compensation device - SAR. 

 

Figure 2.5 presents the digital device basing on 

compensation principle – known as SAR analaog-to-

digital converter (Successive Approximation Register). 

The standard voltage source Us is changing stepwise. 

The first step is equal to half of the maximal value, 

every next step is equal to half of the previous. In this 

way every step represents subsequent bit (in two-digit 

code), starting from the most significant bit. The 

standard voltage is closing to the measured voltage in 

successive approximation. After every step the 

comparator sends the signal to output – this signal is 

one if measured voltage is larger than the standard 

voltage. If standard voltage exceeds measured voltage 

on the output is send zero signal and this step is 

canceled. As result at the output we obtain the zero-one 

sequence representing in digital way the analog 

measured voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.6 

The integrating amplifier as the source of linearly increasing voltage. 
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Instead of stepwise increased voltage to realize 

digital compensation device we can use linearly 

increased voltage. As the source of such voltage can be 

used the integrating amplifier as it is explained in 

Figure 2.6.  

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 2.7 

The integrating compensation device. 
 

Figure 2.7 presents other analog-to digital converter 

basing on the compensation principle
4
. Linearly 

increased voltage is compared with standard voltage Vs. 

When output signal of integrating amplifier starts 

increasing then the gate is opened and pulses of 

oscillator are counted. Next when both voltages have 

the same values the comparator closes the gate. The 

number of pulses is proportional to measured signal.  

We can compensate two signals (active values) – 

voltages, currents, magnetic fluxes. Easier is to 

compensate DC signals but also AC signals can be 

compensated (in this case two equilibrium conditions 

should be fulfilled – amplitude and phase equilibrium). 

But we are not able to compensate two passive values 

as for example resistance or impedance. In such case 

instead of subtraction X-Xs we can determine ratio X/Xs 

between these values.  
 

 

 

 

 

 

 

 

 

 
FIGURE 2.8 

The principle comparator device. 
 

An example of comparator device is presented in 

Figure 2.8. In the circuit presented in Fig. 2.3 we can 

obtain the equilibrium by the compensation of the 

currents I1 and I2  

                                                
4
 Modified converted of such type is known as dual-slope converter. 

1 2I I 0                          (2.7) 

 

This state of equilibrium can be realized by the 

change of the voltage U1 or U2 . The condition of the 

equilibrium is  
 

x 1

s 2

R U

R U
                            (2.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.9 

The principle of the bridge device. 
 

Figure 2.9 presents other measuring device based 

on comparator principle. It is well known bridge 

circuit. We have connected parallel two voltage 

dividers R1/R3 and R2/R4. The balance condition (zero 

voltage on null indicator) is when U3 = U4. These 

voltages are equal to: 
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        (2.9) 

 

Thus we can easy obtain condition of equilibrium: 
 

   3 2 4 4 1 3R R R R R R                    (2.10) 

 

and next:  
 

3 2 1 4R R R R                              (2.11) 

 

Assuming that resistance R1 is a measured resistance 

Rx we obtain the relation: 
 

3
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R
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R
                                  (2.12) 

 

If we fix the resistance ratio R3/R4 we can determine 

measured resistance directly from adjusted resistance 

R2 (by changing the ratio R3/R4 we can change the 

range of our measuring instrument). 

Balanced bridge circuit (with null indicator) was a 

long time ago very important method of measurement 

resistance and impedance (thus also capacity or 

inductivity). It was possible to obtain high accuracy 
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because result of measurement was dependent only on 

the very accurate adjustable resistor and did not depend 

on the supplying voltage U. But recently we have very 

stable and accurate electronic current source Is and it is 

much easier to determine resistance from the Ohm’s 

law: 
 

x

x

s

U
R

I
                               (2.13) 

 

But the modified bridge circuit (known as 

unbalanced bridge circuit) is still very important 

measuring device converting change of resistance to 

voltage
5
. 

If we use balanced bridge circuit for measurement of 

resistance the accuracy of determination of resistance 

Rx according to relation (2.12) depends on the 

accuracy of all rest resistors 
 

     
2 2 2

x 2 3 4R R R R            (2.14)
6
 

 

We can easy improve significantly accuracy of this 

measurement by applying the substitution method. Let 

us assume that we measure resistance in two steps. 

First we connect to bridge circuit measured resistance 

Rx. Next, in the second step we substitute resistance Rx 

by standard resistance Rs. By changing this resistance 

we try to obtain the same result (for example 

equilibrium, but also unbalanced state is acceptable). It 

is obvious that in such case accuracy of the bridge 

resistors is not important and accuracy of measurement 

depends only on the accuracy of substituted standard 

resistor: 
 

x sR R                                  (2.15) 

 

Other example of the substitution method is 

presented in Figure 2.10. It is very difficult to measure 

alternating current especially if it is distorted and of 

high frequency. In contrary we are able to measure DC 

current with very high accuracy. Therefore we perform 

measurement in two steps. As first we connect 

alternating current to the thin wire and we detect 

temperature of this wire (as result of heating by 

current). In the next step we substitute AC current by 

standard DC current and we change this current to 

obtain the same temperature of the wire. If both 

temperatures are the same it means that “effective” 

                                                
5
 Described later in chapter devoted to bridge circuits 

6
 The relation (2.11) is explained later in chapter 2.5 - devoted to 

uncertainty of measurements. 

value of both current is the same and it is sufficient to 

determine only DC current. 
 

 

 

 

 

 

 

 

 
 

FIGURE 2.10 

The example of the substitution method. 
 

Pure comparison with standard value (by subtraction, 

by comparator or by substitution) is only one element 

of typical measuring system. Usually more often the 

measuring device is composed of many parts in form of 

a chain of transducers (converters). Every component 

can introduce errors and often the most weaken chain 

link can force the performances of the whole device. 

 

 

 

 

 

 

 

 

 
FIGURE 2.11 

The example of the power measuring device. 
 

Figure 2.11 presents an example of the device for 

power measurement. At first stage we should measure 

current and voltage. Next we can determine power by 

using an analogue multiplier. But we can also switch 

every value by multiplexer and next convert to digital 

values. By using microcontroller (or computer) we can 

perform more sophisticated operations, as calculation 

cos, reactive power, total harmonic distortion THD 

etc. Next we can send the final values by user interface 

to screen or printer but also we can transmit data by 

computer net or wireless transmitter. Thus conversion 

of measured values is very important and mostly used 

operation in measuring systems. 

 

2.2 The conversion of measured values 

Figure 2.12 presents selected example of the 

conversion devices. First of all there are a huge number 

of sensors converting various physical values into 

electrical value [Fraden 2003]. If as an output is a 

signal (voltage, current, etc.) we say that these sensors 

are active sensors and output signal can be transmitted 
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to other devices. Often the measured value is converted 

into such parameter, as resistance, capacity etc. In this 

case, at the output of passive sensors we should 

connect the conditioning circuit converting this value 

into signal. Generally conditioning circuit [Pallas 

Areny 2001] beside conversion R/RU includes also 

other functions as signal, amplification, errors 

correction, mathematical operation, even Ethernet, 

USB or wireless interface. Sometimes these circuits 

can be included into sensor – in this case we say about 

intelligent sensors [Manabendra Bhuyan 2011].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.12 

Various examples of the conversion of measured values: a) sensor, b) 
conditioning circuit, c) amplifier, d) mathematical operation – 

multiplier, e) analog to digital conversion, f) AC to DC conversion, g) 

voltage to current conversion, h) conversion from time domain to 

frequency domain, i) interface, j) transmitter - receiver. 

 

We can convert analogue signal into digital (A/D 

converter) and next perform mathematical operation by 

using for example microcontroller. But often we can 

use analogue mathematical converters, as multiplier, 

integrating amplifier etc.   

If we transmit analogue signal by wire it is 

convenient if the output signal is a current, because in 

this way change of resistance of the wire (caused for 

example by the changes of temperature) does not 

influence the result. Therefor for such purposes we use 

voltage-to-current transducers.  

Signal can be processed in time domain but 

sometimes it is convenient if it is in frequency domain. 

Conversion between these domains is possible by using 

Fourier transform, for example Fast Fourier 

Transform FFT.  

When we transmit signal to other device, for example 

to computer usually is used standardized connection 

known as interface. This connection can by realized by 

wire or wireless.  

The data converters (transducers) [Kester 2005, 

Maloberti 2007] are described in more details in next 

chapters of this book. If they are used as measuring 

devices that should be described by their typical 

specifications as: 

- accuracy, 

- range (Full Scale FS), 

- resolution, 

- sensitivity (transfer function), 

- linearity, 

- influence of temperature (environmental factors), 

- hysteresis and repeatability, 

- crossfield effect, 

- dynamic characteristic, 

- excitation (power consumption)
7
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.13 

Typical errors of conversion: he example of the power measuring 

device: a) error of sensitivity, b) error of nonlinearity, c) error of 

resolution, d) hysteresis. 

Performances of the measuring device are described 

by its dependence between output signal and input 

signal known as transfer function  

                                                
7
 Comprehensive review of such specifications is presented by [van 

Putten 1996]  
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out K in                            (2.16) 
 

with transfer coefficient K. 
 

The transfer coefficient is established during 

calibration of the device – it can be for example testing 

with measuring device of much better accuracy, 

assumed as standard or reference device. Transfer 

coefficient means practically the same as sensitivity S = 

out/in but taking into account possible nonlinearity 

often we used differential sensitivity 
 

out
S

in




                                (2.17) 

 

The best is if we can describe transfer characteristic 

in form of mathematical relation. For example change 

of the resistance versus temperature of platinum 

thermoresistive sensor is: 
 

2

0

R
At Bt At

R


                        (2.18) 

 

Similarly change of the resistance versus relative value 

of magnetic field hx of magnetoresistive sensors 

[Tumanski 2000] is 
 

2

0

1x x x

R
h h h

R

 

 

  
            (2.19) 

 

where hx is the value of magnetic field Hx related to 

anisotropy field Hk (Hk and / - material 

parameters). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.14 

An example of transfer characteristic of magnetoresistive sensor (Vnl 
– error of nonlinearity). 

 

Figure 2.14 presents an example of the transfer 

characteristic described by relation (2.19). We see that 

often transfer characteristic is nonlinear and instead of 

the relation (2.16) we should use following equation:  
 

 out K in in                     (2.20) 

 

The error of non-linearity is  
 

 
1nl

K inout out

out K



                 (2.21) 

 

As it is presented in Figure (2.14) we can decrease 

the nonlinearity to acceptable value by decreasing the 

range of input value. Thus nonlinearity (often in form 

of saturation for large value) limits the range of 

measuring device.  

Sometimes we can obtain the effect of linearization 

by appropriate design of the transducer. For example 

sensitivity coefficient of a Hall sensor of thickness t is 

[Popovic 2004]  
 

H
H

R
S G

t
                             (2.22) 

 

Both the geometrical factor GH and the Hall effect 

coefficient RH depend on the carrier mobility µH but 

also on the measured magnetic field B 
 

 2 21H HO HR R Bm   and  2 2

0 1H H HG G Bm   

(2.23) 
 

Fortunately the coefficients  and  have opposite 

signs and therefore it is possible to design a Hall sensor 

with a transfer characteristic close to linear. The best 

method of linearization is to use feedback because 

sensor works then only as zero detector (thus with very 

limited value of input signal). 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.15 

Linearization of transfer characteristic of magnetoresistive sensor by 

applying of a feedback. 

 

Very important factor limiting performance of 

measuring device is resolution (Figure 2.13c). Usually 
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the main source of limitation of resolution is noise. The 

main sources of noise are internal, for example 

resistance of the sensor is the source of thermal 

Johnson noise UnT whilst semiconductor junction is the 

source of shot noise Ins 
 

4nTU kTR f                      (2.24) 

2nsI qI f                          (2.25) 

 

where k is the Boltzman constant and q is the electron 

charge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.16 

The example of power spectral density characteristic of noise 

determined for two types of magnetic sensors. 

 

The noises can be described by the power spectral 

density PSD of noise (Figure 2.16). Because the noise 

depends on the frequency range f usually the spectral 

density S(f) of noises is presented in form: 
 

 

2
2

n nU U
S f

f f

 
   

   

                (2.26) 

 

Hence a "unit" of noise can be described for example 

as /V Hzm  or a noise equivalent of measured value, 

for example in the case of magnetic field as /nT Hz . 

Because level of noises depends on the frequency 

bandwidth f the best method to limit the noise is 

decrease of the frequency bandwidth – by using filters, 

selective amplifier of lock-in amplifier. 

The second important limitation of the resolution is 

offset, in particular a temperature zero drift. Such 

problem is especially difficult in the case of resistive 

sensors where changes of resistance caused by 

measured value and changes of resistance caused by 

the temperature are not easy to separate.  

Often the source of temperature zero drift lies in 

technology – defects in structure causing differences in 

heating of different parts of circuit. To decrease this 

effect special laser trimming technology can be used. 

The effective way to remove zero drift is a differential 

principle (described in the next chapter) or auto-zero 

function.  

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.17 

The example of auto-zero function. 
 

Figure 2.17 presents the principle of temperature 

zero rejection by auto-zero function. In the first step 

switches K2 and K3 are closed. The amplifier detects 

its own zero drift. This drift is saved on the capacitor 

C0. In the next step switches K2, K3 are disconnected 

while switch K1 is connected. The saved on capacitor 

zero signal is now subtracted from measured signal. 

Practically almost all measuring devices are 

influenced by temperature. By an appropriate design it 

is possible to prepare temperature compensated 

sensors. For example temperature error of 

magnetoresistive sensor depends on the temperature 

changes of magnetoresistitvity  and the temperature 

changes of anisotropy Hk 
 

/

k

t Hk

k y

H

H H tM w
   

 
       (2.27) 

 

For Permalloy   -0.018 K
-1

 and Hk  -0.022 K
-1

 

and by appropriate design of thickness t and width w of 

the magnetoresistive strip we can obtain temperature 

self-compensating sensor. 

For vector measurement important can be crossfield 

effect. It means that although we detect one component 

of measured value but second, orthogonal one 

influence the result.  

In analysis of the response of measuring circuit we 

often neglect dynamic (time) effect assuming that we 

have steady conditions. But sometimes process of 

reaching steady value can be longer than time when we 

performed measurement. If we performed measurement 

too early we can made significant error as it is 

indicated in Figure 1.18b. Dynamics of transducers is 

very important for control technique especially that 

exist sensors of chemical values with very poor 
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dynamic conditions. For example detectors of oil 

pollution sometimes need several minutes to obtain 

stable condition what is not acceptable for monitoring 

alert systems.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.18 

The response to the step input of device with inertia (a) and with 

oscillation (b). Dashed area – error caused by too early reading. 
 

There are two methods of analysis of dynamic 

properties – versus time and versus frequency. In time 

analysis we introduce a stepwise change of input value 

and observe answer versus time. The most often answer 

is with inertia as is illustrated in Fig. 2.18a. The inertia 

type circuit can be characterized by the time constant T. 

For the first order inertia this time constant can be 

determined as the 0.638yF  (yF – final value) or by 

drawing a tangent line to the response curve. 

Inertial response y(t) for input signal x(t) is typical 

for first order transducer described by equation: 
 

dy
T y kx

dt
                          (2.28) 

 

where T is time constant and k is a static transfer 

coeffici8ent. 
 

For stepwise input x(t) = A 1(t) the answer is 

described as: 
 

   t / Ty t kA 1 e    or     
kA

Y s X s
1 sT




  (2.29) 

 

In the case of second order transducer described by 

the equation: 
 

2
2

0 0 02

d y dy
2b y kx

dtdt
                     (2.30) 

 

where b is a damping coefficient and 0 is a resonance 

frequency. 
 

the answer can be inertial or oscillatory depending on 

the damping.  Transition between inertial and 

oscillatory answer is for b = 1. The equations 

describing answer for the stepwise input are more 

complex: 
 



























 







b

b
arthtbshe

b

y)t(y
tb

u

1
1

1

1
1

2

0
2

2

0   

(2.31) 

in the case of output with inertia or 
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











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

b

b
arctgtbsine

b

y)t(y
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u

2

0
2

2

1
1

1

1
1 0   

(2.32) 

in the case of oscillations.  
 

Therefore the second order transducer is more 

convenient describe versus frequency by the transform: 
 

 
2

0

2 2

0 0

KY( s )
G s

X( s ) s 2b s



 
 

 
      (2.33) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.19 

The amplitude and phase characteristics of the second order 

transducer. 

 

The amplitude and phase characteristics (Figure 

2.19) are described by:  
 

y y

t tT

a) b)
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 
   2

22 21 hh



b

K
jG



          (2.34) 

 
1

2
2 


h

h


b
arctg                       (2.35) 

 

where 
0/h   . 

 

The device processes the dynamic signal without 

distortion if the amplitude is constant with frequency: 
 

  constjG                         (2.36) 

 

Important also is the phase condition in the form:  
 

  p koror0                 (2.37) 

 

From the characteristics presented in Figure 2.19 

we can see that transducer can be used for plateau of 

amplitude characteristic - for  < 0. It can be proved 

[Hagel, Zakrzewski 1984] that optimal value of 

damping is b = 0.707 when the plateau is the widest 

and phase characteristic is close to linear. 

 

2.3 Feedback and differential operation in 

measuring systems 

In the measuring systems the feedback is very 

advantageous and it should be applied always if it is 

possible. Let us compare the performances of open-

loop and feedback voltage transducers – presented in 

Figure 2.20.  

 

 

 

 

 

 

 

 

 

 
FIGURE 2.20 

The voltage transducer: without feedback (a) and with feedback (b). 

 

 If the transducer operates without feedback (Fig. 

2.20a) its conversion factor is 
 

o
u

in

out

R
K

U

I
K

1
                            (2.38) 

 

 Thus this factor directly depends on the gain factor 

of the amplifier. Usually, it is rather difficult to ensure 

stable gain, which is varying with the temperature, 

supply voltage or by the aging of the elements. If we 

apply the current feedback (Fig. 2.20b) then the 

conversion factor is 
 

u

u

u

K 1 1
K

11 K

K

 


  




              (2.39) 

 

where  is the feedback coefficient. 
 

We see that gain factor does not influence the result 

and transfer coefficient depends only on the feedback 

(if gain is very large what usually is fulfilled). In our 

case the feedback coefficient depends only on 

resistance Rw – we can easy prepare this resistance as 

stable and with high accuracy.  

After differentiation of (2.39) we obtain: 
 

u u

u u u

dK KdK 1 d

K 1 K K 1 K

 

  
 

 
         (2.40) 

 

Usually the feedback elements are stable and precise 

(in our example it is the resistance Rw), thus we can 

assume d/  0 . The equation (2.40) is:  
 

u

u u

dKdK 1

K 1 K K



                   (2.41) 

 

As larger factor Ku (depths of feedback) as more 

negligible are changes of the gain of the amplifier. 

Thus after application of the feedback the accuracy 

of the transducer increases significantly. It should be 

noted that the feedback decreases only multiplicative 

errors, the additive errors (for example zero drift) do 

not decrease with feedback.  

 The feedback improves also the linearity of the 

transducer. The input signal of the amplifier is  
 

in outx x y                            (2.42) 

 

and because  
 

out uy K x                              (2.43) 

 

the input signal of the amplifier is decreased by 

(1+Ku)  
 

in

u

x
x

1 K






                            (2.44) 

 

One of the sources of the nonlinearity is large range 

of input voltage of the amplifier (close to the 

saturation). If the input signal is small we use only 

Vin Vin

Iout

Ro

Iout Rw

a) b)

Ku KuU

Ro

Iout
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linear part of the amplifier transfer characteristic. For 

the circuit presented in Fig. 4.20 the equations (2.42 – 

2.44) are: 
 

in out wV V I R   ;   out u

o w

1
I VK

R R



    (2.45) 

in

w
u

w o

V
V

R
1 K

R R

 




                    (2.46) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.21 

By applying the feedback we use only small linear part of the whole 

characteristic. 

 

 The input signal of the amplifier V is significantly 

smaller than the input signal Vin of the whole transducer 

(for example if we process an input signal in the range 

of mV the input signal of the amplifier is in the range of 

mV). It means that we use only small linear part of the 

characteristic of amplifier (Figure 2.21). As it is 

presented in Figure 2.15 feedback improves also 

linearity of the nonlinear sensor. 

 It is recommendable if the transducer exhibits large 

input resistance, because the source of the signal is not 

loaded. Moreover, if the resistance of the source Rs is 

varying it does not influence the accuracy. The 

feedback enables significant increase of the input 

resistance. For the transducer presented in Fig. 4.20b 

we can write that 
 

in out w

in

in w s

V I R
I

R R R




 
                    (2.47) 

 

Taking into account the dependencies (2.44) we obtain 
 

in

in

in w s u

V 1
I

R R R 1 K 


  
            (2.48) 

Without the feedback (Fig. 2.20a) we have 
 

in

ino

in s

V
I

R R



                         (2.49) 

 

Neglecting the resistance Rw as rather small we can 

state that after applying of the feedback the input 

current decreases by factor of (1+Ku) and  
 

  inoin RGR  1                    (2.50) 

 

where Rino is the input impedance without feedback.  

 

Similarly, we can prove that the output impedance of 

the transducer with current feedback is 
 

 uwoutoout KRRR  1            (2.51) 

 

while the output impedance of the transducer with 

voltage feedback is 
 

u

outo
out

K

R
R




1
                    (2.52) 

 

By applying the current feedback we obtain the 

transducer with current output (large resistance – 

current source). By applying of the voltage feedback 

we obtain the transducer with voltage output (small 

resistance – voltage source). 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.22 

Current to voltage (a) and voltage to current (b) converters. 

 

Figure 2.22 presents two converters where due the 

feedback it is possible to arrange input and output 

resistances. In current to voltage converter (small 

output resistance) the output signal is: 
 

out inV RI                          (2.53) 

 

while in reverse converter (large output resistance) the 

output current is: 
 

in

out

V
I

R
                                 (2.54) 
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Feedback helps also in improvement of the dynamic 

performances of the transducer. If the open circuit is 

inertial and is described by the following transmittance  
 

 
sT

K
sG u




1
                  (2.55) 

 

then the transmittance of such circuit with feedback is  
 

 
 
 

u

u

u

K

T
s

K

K

sG

sG
sK














1
1

1

11
    (2.56) 

 

We see that the time constant T decreases by a factor 

of (1+Ku) (the sensitivity also decreased by the 

(1+Ku) factor). Fig. 2.23 presents the comparison of 

the response for the step function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.23 

The response to the stepwise input of inertia transducer. 

 

Also in the case of the oscillation type of the transducer 

we obtain improvement of the performance after 

applying the feedback. Without the feedback the 

transmittance is: 
 

 
22

2

2 ssb

K
sG

oo

ou







          (2.57) 

 

where o is the resonance frequency and b is the 

damping coefficient of the oscillations. 
 

After applying of the feedback the transmittance is 
 

 

    22

2

1
121 ss

K

b
KK

K
sK

u
uouo

ou


























 (2.58) 
 

We see that with the feedback the resonance 

frequency increases by uK1  while damping 

decreases by a factor of uK1 . The comparison 

of the frequency characteristics for the circuits with and 

without the feedback is presented in Fig. 2.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.24 

The frequency characteristic of the transducer of oscillatory type. 

 

Feedback can be realized also by other than electrical 

way. Figure 2.25 presents the force transducer. 

Measured force Fx causes the deflection of the bar and 

moves the displacement sensor P1 from the state of 

balance. The output signal of this sensor after 

amplification is connected to the coil of electromagnet 

P2. The force of repulsion of this coil moves the bar 

back in order to obtain again the state of balance (and 

zero signal from the sensor P1). Therefore this 

transducer is also called the current weight. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.25 

The transducer of force with feedback and current output. 

 

The output current creates the balancing repulsion 

force 
 

outoutz IkBzdlIF 1                 (2.59) 
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where B is the induction of the electromagnet, d an l 

are the dimensions of the coil and z is a number of 

turns. 
 

Thus the output current is proportional to the 

measured force 
 

xout kFI                            (2.60) 

 

This transducer can be used for measurement 

pressure and flow. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.26 

The transducer of resistance to frequency. 

 

Figure 2.26 presents another type of transducer with 

feedback. This transducer converts the resistance to the 

frequency signal and the frequency is a feedback. 

There is a certain group of bridge circuits, in which 

the condition of balance depends on the frequency of 

the supplying signal. For example, the balance 

condition for the bridge circuit presented in Fig. 2.26 

is: 
 

 xRRRRCC 43232

1


                  (2.61) 

 

If we use the voltage controlled oscillator VCO the 

frequency is tuned to obtain balance of bridge. 

We proved that feedback significantly improve 

performances of measuring transducer: 

- improves of the accuracy, 

- improves of the linearity, 

- increases of input resistance (advantageous for 

voltage measurement), 

- increases of output resistance (advantageous for 

signal transmission). 

And what about the drawbacks? In some cases the 

circuit with feedback can be more complex. But the 

main drawback is the risk of instability – typical for all 

circuits with feedback. Fortunately we are able to 

design of appropriate correction PID circuits to assure 

the stable operation. 

 

 

 

 

 

 

 

 

 
FIGURE 2.27 

The single-ended (a) and differential (b) amplifier. 

 

The feedback is very useful for decrease of 

multiplicative errors but it disappoints when exist 

additive errors, as for example temperature zero drift. 

In such case the differential operation can be helpful.  

Figure 2.27b presents the the differential amplifier. 

The important advantage of such an amplifier is the 

possibility of suppression of the parasitic signals. The 

input signal is processed as the difference of two inputs 

signals 
 

 out u 1 2V K V V                    (2.62) 

 

 The parasitic interference signals V are the same 

on both inputs. Therefore the output signal is 
 

     out u 1 2 u 1 2V K V V V V K V V          

(2.63) 

 

 Thus it is possible to amplify the voltage difference 

with the large common signal V in the background. 

The possibility of the rejection of the common parasitic 

component is described by the coefficient CMRR – 

Common Mode Rejection Ratio defined as 
 

K
CMRR 20log

K




                     (2.64) 

 

where K
-
 is the amplification of the voltage difference 

and K
+
 is the amplification of the common signal.  

Taking into account this parameter the output voltage is 
 

 
 










 

21
21

1
1

UU

U

CMRR
KUUUout  (2.65) 

 

The second component in the square brackets of the 

equation (2.65) describes the error caused by the 

presence of the common component.  

If we connect to the input of differential amplifier the 

resistive sensor and the reference resistor of the same 

resistance Rx0 as it is presented in Figure 2.28 we obtain 

rejection of the common component: 
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 out u w x0 x x0 u w xV K I R R R K I R         (2.66) 

 

This way we reject common zero component and 

output signal is proportional only to the change of 

resistance. For example if we use Pt100 temperature 

sensor it has resistance in 0C equal to 100 and the 

change of resistance about 3.9%/10C. Thus if we 

measure temperature 0 - 10C and use current 1 mA we 

have large steady component 100mV and small change 

of signal proportional to temperature 3.9 mV (103.9 

mV).  But in differential circuit (Figure 2.28a) we 

amplify only signal 3.9mV. 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.28 

Differential connection of the resistive sensor: a) one active sensor, b) 

two differential sensors. 

 

Much better results is possible to obtain if we 

connect two identical sensors – one active and second 

passive as the reference. For example in the Figure 

2.29a we have two GMR magnetic sensors. One of 

them is active and the second one is passive (covered 

by shield). If the external temperature T changes the 

temperature zero drift is rejected: 
 

       x0 x x x x0 x x xR R H R T R R T R H       

(2.67) 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.29 

Passive and active magnetic field sensors (a) and two active 
differential magnetic field sensors (b). 

 

We rejected both: steady zero component and 

temperature zero drift. Even better results we obtain if 

we have two differentials sensor. Differential sensors 

operate as follows: 
 

1 x0 xR R R  and  
2 x0 xR R R          (2.68) 

 

For example it is possible to design AMR 

magnetoresistive sensors that in one of them resistance 

increases and in the second one decreases versus 

measured magnetic field (Figure 2.29b) [Tumanski 

2000]. In such case (Figure 2.28b) we reject both: 

steady zero component and temperature zero drift and 

the input signal is two times larger than in the case of 

one sensor. 

 

 

 

 

 

 

 

 

 
FIGURE 2.30 

Passive and active differential sensors . 
 

Fig. 2.30 presents other examples of the differential 

sensors. In the case presented in Fig. 2.30a two 

identical strain gauge sensors (sensors of mechanical 

strain or stress) are glued on the surface of stressed 

sample. But only one of these sensors (R1) is stressed 

while the other (R2) is placed perpendicularly to the 

stress. The temperature influences both sensors and as 

common component can be rejected.  

Fig. 2.30b presents the stress measurement of the 

bended sample. The sensors R1 is compressed, while at 

the same time the sensors R2 is stretched. Similarly in 

capacitance differential sensor (Figure 2.30c) when 

internal electrode is moved one capacitance increases 

and second one decreases. 

The most frequently as differential measuring circuit 

the bridge circuit is used (Figure 2.31). The output 

voltage depends on the changes of all four resistors as 

follows: 
 

3 41 2

out s

1 2 3 4

R RR R1
V V

4 R R R R

   
    

 
  (2.30) 

 

Thus, if the temperature influences two identical 

resistors R1 and R2 while the measured value influences 

the resistor R1, then the output signal of the bridge 

circuit is: 
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1 1 2
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1 1 2
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.(2.31) 

 

and the influence of external temperature is eliminated. 

From Eq. (2.30) results that in bridge circuit we can use 

two pairs of differential sensors. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.31 

The bridge circuit a tool to apply the differential principle. 
 

Basing on the idea presented in Figure 2.28 

Anderson proposed measuring circuit known as 

Anderson loop (Figure 2.32) [Anderson 1994, 1998].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.32 

Two examples of Anderson loop. 

 

In comparison with the bridge circuit the Anderson 

loop has two important advantages. In Anderson loop it 

is possible to connect simultaneously several sensors – 

the loop with four sensors is presented in Figure 2.32b. 

The output signal of each sensor can be determined as 

the difference between output voltage and reference 

voltage, for example 
 

101 ZIUU ref                       (2.32) 

Moreover the Anderson loop consumes smaller 

power than the bridge sensors what was important in 

NASA applications. 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.33 

Two differential sensors used as a gradiometer. 

 

By applying the differential operation we can reject 

also other parasitic signal. Fig. 2.33 presents a method 

of elimination of the influence of external magnetic 

field (for example Earth’s magnetic field) during the 

measurement of magnetic field from the source S. Such 

problem is common in biomedical measurements, when 

small magnetic field needs to be investigated, for 

example with magneto-cardiograph in presence of 

much larger Earth’s magnetic field. These two sensors 

are connected differentially and are positioned at some 

distance from each other. We can assume that the 

source of Earth’s magnetic field is large and it is at 

long distance from the sensors; therefore, the external 

magnetic field Hext is the same in both sensors. The 

investigated source of magnetic field is small and near 

the sensors thus sensor placed closer to this source is 

influenced more than the other sensor positioned at 

some distance from the source S. Such pair of sensors 

is known as gradiometer device because this device 

detects the gradient of magnetic field. 
 

2.4 Signal characteristics 

The information obtained as the result of 

measurement is usually processed as a measurement 

signal. As the measurement electric signal we mean the 

time varying electric signal representing measured 

value. Various signal parameters can be used as the 

representation of the measured value: magnitude, 

frequency, phase, etc. Usually electric voltage (or 

current) with sufficiently large magnitude is preferred. 

Recently commonly as the signal carrier the digital 

signals are used. We divide the signals into analogue 

and digital (discrete time signals) (Figure 2.34).  In the 

case of analogue signal we usually know the value in 

every moment (continuous time signals) and in the case 

of periodic signal it is possible to describe it using the 

sinus function: 
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mx( t ) X sin2 fp                       (2.33) 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.34 

Analogue (continuous time) and digital (discrete time) signals. 

 

A digital signal is obtained by determination of its 

value (usually in binary code) only in selected 

moments (discrete time signal). Instead of time it is 

described by number of the sample n: 
 

m sx( n ) X sin2 fnTp                   (2.34) 

 

where Ts is a period of sampling. 
 

Most of physical phenomena are analogue and digital 

signals are slightly artificial, with their own 

mathematic tools. Therefore they are discussed 

separately in the chapter devoted to digital signal 

processing. 

The signals can be deterministic or stochastic. The 

deterministic signals can be predicted with certainty 

and are reproducible. In the case of the stochastic 

signals we can only predict (estimate) them with some 

level of probability. We use tools of theory of 

probability to describe and analyze the stochastic 

signals. 

The DC signal is described by one parameter – its 

value. The AC signal can be described by various 

parameters: the magnitude Um or peak value Up, mean 

value U0, average (rectified) value UAV, effective (rms – 

root mean square) value Urms, peak-to-peak value Upp, 

instantaneous value u(t). Moreover, we should know 

the frequency f (or =2pf or period T=1/f) and the 

phase .  

 If the voltage signal is described by the equation 

(2.33) its main parameters are as follows 
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It is easy to calculate that for sinusoidal signal these 

parameters are 
 

  V0 = 0; VAV = 0,637Vm; Vrms = 0,707Vm; Vpp = 2Um  

 

Even if AC signal is not pure sinusoid but it is 

periodic it can be described as the sum of harmonics 

(by applying the Fourier Series)  
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or in exponential form 
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When the function x(t) is even (in mathematical 

sense) then coefficients bk = 0 and when the function 

x(t) is odd then ak = 0. Table 2.1 presents the Fourier 

representation of some typical signals. 

Deviation from the pure sinusoidal waveform is 

described by total harmonic distortion THD (as the 

percentage ratio of all harmonics components above the 

fundamental frequency to the magnitude of 

fundamental component):  
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TABLE 2.1 

Fourier representation of typical signals. 

A

T

t

f(t)

 

 









 ...)5sin(

5

1
)3sin(

3

1
)sin(

4
)( 000 ttt

A
tf 

p
 

A

T

t

f(t)

 

 









 ...)5sin(

5

1
)3sin(

3

1
)sin(

8
)( 020202

ttt
A

tf 
p

 

A

T
t

f(t)

 

 








1

02cos
42

)(

n

tn
AA

tf 
pp

 

A

T
t

f(t)

 

 

tn
n

A
t

AA
tf

n

0

1
20 2cos

14

12
sin

2
)( 

p


p 


 
  

 

 

The distorted signal can be presented as a Fourier 

series also in a graphical form. Usually the signals are 

presented in form a line spectrum where the individual 

harmonics are represented by vertical lines (Fig. 2.35).  

 

 

 

 

 

 

 

 

 

 
FIGURE 2.35 

An example of the spectral analysis of the sinusoidal signal (a) and 

distorted signal (b).  

. 

We see that the same signal can be presented in two 

forms – in time domain (Figure 2.34) or in frequency 

domain (Fig. 2.35) - (both methods are 

complementary). The conversion between signal 

described in time domain and frequency domain is 

possible using Fourier transform:  
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Indeed, as it illustrates Figure 2.36 time domain or 

frequency domain it is only other point of view on the 

same signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.36 

An example of the spectral analysis of the sinusoidal signal (a) and 

distorted signal (b).  
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More complex is the analysis of non-periodic signals 

because we cannot use the Fourier series rules. In this 

case instead of Fourier series (2.36) we can use Fourier 

integral transform (2.40) (by treating an aperiodic 

signal as a periodic with an infinite period). 

Mathematically we are able to analyze only simple 

waveforms. Figure 2.37 presents Fourier transform of 

rectangle pulse and sint/t signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.37 

Fourier transform of rectangle pulse and sint/t signal.  

 

If the signal in time domain is the rectangle pulse 
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the Fourier transform is 
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And reversely if signal in time domain is 
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x t 2
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the Fourier transform is a rectangle. 

 

The Fourier transform is reversible – it means that 

we always can return to previous time domain signal by 

using inverse Fourier transform (2.39). But the signals 

should be stationary - are constant in their statistical 

parameters over time. In non-stationary signals we can 

test periodicity by using autocorrelation function: 
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We multiply signal with it complex conjugate 

shifted by time  - this way we test is exists similarity 

between this two parts of the signal. We can also test 

similarity of two various signals by co-corellation 

function: 
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If we have stochastic signal we can test its mean value: 
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variance (spread around mean value): 
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standard deviation 
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and rms value: 
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2.5 Uncertainty of measurements  

The International Organization of Standardization 

(ISO) with collaboration of many other prestigious 

organizations edited in 1993 a “Guide to the expression 

of uncertainty in measurement”- usually known as 

GUM
8
. This document was a result of thousands 

discussions in metrological milieu and many years of 

preparation. Today, we can say that before the Guide 

there was the theory of errors and after the Guide there 

is the theory of uncertainty in measurements.  

Unfortunately the Guide did not solve the problem of 

understanding of measurement accuracy, because it is 

written with very difficult style and it is clear only for 

very narrow circle of specialists. No wonder that after 

the Guide the frustration of people active in 

measurements deepened and the milieu divided to the 

                                                
8 Recently valid is version JCGM 100:2008 “Evaluation of 

measurement data — Guide to the expression of uncertainty in 

measurement” developed by JCGM – Joint Committee for Guides in 

Metrology available in BIPM’s website (www.bipm.org) - BIPM (The 

International Bureau of Weights and Measures (French: Bureau 

international des poids et mesures) 
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initiated peoples, who understand the Guide, and the 

rest, who don’t. A lot of publications explaining the 

terms from the Guide have been published (Coleman et 

al 1999, Dunn 2010, Fornasini 2008, Gertsbakh 2003, 

Hughes et al 2010, Kirkup et al 2006, Pavese et al 

2009, Wheeler et al 2004, Rabinowich 2005, Taylor 

1996). The Guide is an official document, as well as 

standard and law, therefore everyone is obliged to try 

understand it and to comply with it.  

We should start with attempt to order of many, 

sometimes excluding terms, as: uncertainty, error, 

precision, estimated value, true value, measurand etc. 

In this task helpful should be document known as VIM 

(Vocabulaire international de métrologie) 
9
  

According to this vocabulary VIM the error of 

measurement is the difference between measured value 

and the true value. Because we seldom know the true 

value therefore better is to substitute an error by the 

uncertainty of measurement - parameter characterizing 

the dispersion of the measured value around the 

estimated value (attributed to measurand). The 

measurand
10

 means quantity intended to be measured. 

It can be other than measured value due to for example 

influence of measuring equipment into measured value 

(for example when we measure the voltage with 

voltmeter of too small value or if we measure the 

temperature with thermometer distorting the 

distribution of temperature). Thus we can say that 

uncertainty is an estimation of the error in 

measurement. 

In vocabulary VIM the accuracy
11

 is only the ability 

of the measuring system to provide a quantity value 

close to the true value. It is not a quantity and describes 

only quality of measuring device (more or less accurate 

measurement). Also in vocabulary the precision of 

measurement means only agreement between measured 

quantity value obtained by replicate measurement (thus 

meaning similar to repeatability). 

And what about error? The VIM accepts the usage of 

term “error” if we know with sufficient accuracy the 

                                                
9 “International vocabulary of metrology - Basic and general 

concepts and associated terms (VIM)” – document JCGM 200:2008 

available in BIPM’s website (www.bipm.org). 
10

 The official documents of ISO consequently use the term 

measurand. For the sake of simplicity, and because the word 

measurand does not exist in Dictionaries of English, further in this 

book these parameters (measurand or value to be measured) are called 

“the measured value”. 
11

 In common talking, we can often come across a statement like: “the 

measurement was performed with the accuracy 0.1%”. It is of course 

logical mistake, because it means that the measurement was 
performed with inaccuracy 0.1% (or accuracy 99.9%). To avoid such 

ambiguity it is better to say “the measurement was performed with the 

uncertainty smaller than 0.1%”.  
 

reference value (attributed to true value). For example 

if we perform calibration of measuring device by 

comparison with standard device we can say about 

error. Similarly if we determine the difference between 

straight line and nonlinear characteristic we can also 

say about error of nonlinearity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.38 

An example of graphical indication of uncertainty of measurement.  

 

It is recommended to present the result of 

measurement with uncertainty of measurement – for 

example (5.255  0.002) V or 5.255 V  0.01%, 

although VIM accepts results with not indicated 

uncertainty of measurement if it is negligible small. 

Figure 2.38 presents the example of graphical 

indication of uncertainty of results. 

The error or uncertainty can be presented as absolute 

error (difference between results of measurement and 

mesurand XM) or more convenient is to present it as 

relative error in % : 
 

MX X X    or  M

X
X X X

X


       (2.50) 

 

Unfortunately, the prevailing opinion (especially 

among students) is that the analysis of uncertainty is 

rather difficult and somewhat dull. Sometimes, people 

even say that the measurements would be interesting if 

not the theory of errors. On the other hand, if it is 

indispensable to use this theory better it is to grow fond 

of it. Moreover, in many cases the analysis of accuracy 

of measurement can be intellectually challenging and 

even can be more important and interesting than 

routine measurement procedure. 

We can rewrite the equation (2.50) in the form 

representing an error: 
 

XXXXX TT               (2.51) 
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which can be read as follows: the result of 

measurement X is determined with the dispersion X 

around the true value XT (bearing in mind that X is 

an absolute error of measurement). 

According to the concept presented in the GUM the 

dependence (2.51) should be substituted by the 

dependence 
 

   1Pr 00 uXXuX          (2.52) 

 

which should be interpreted as follows: the result of 

measurement X is determined with the uncertainty  u 

around the estimated value X0 with the level of 

confidence (1-). Symbol Pr in the equation (2.52) 

denotes the probability. 

We can see that the true value (which we never 

know) is now substituted by the estimated value. 

Similarly, the error is now substituted by the 

uncertainty, because we also do not know the value of 

that error. Earlier the probability was attributed only to 

random errors. Now practically all uncertainties should 

be considered taking into account probability. Indeed if 

we measure voltage with digital instrument of high 

accuracy always we know the last digit as 0.5X <X<1.5 

X with uniform probability (for example in result 2.255 

all results between 2.2545 and 2.2555 are equally 

probable).  

The resultant uncertainty of measurement can 

comprise several components: corrections (a), random 

uncertainty (b), uncertainty related to the imperfect 

accuracy of measuring devices and methods (c), 

uncertainty related to non-perfect model of investigated 

phenomenon (d) and mistakes (e).  

a) The correction is the uncertainty X0 which we are 

able to determine and remove. For example the transfer 

characteristic of the thermoresistive sensor is often 

described by the dependence RT = R0 (1+T) – where 

R0 is the resistance in temperature 0C, RT is the 

resistance in temperature T,  is the temperature 

coefficient. But more detailed analysis of the transfer 

characteristic leads to a conclusion that the 

thermoresitor is better described by the dependence: 

R’T = R0 (1+T+T
2
). Thus, if we do not take into 

account the nonlinearity of the sensor we make error of 

linearity: 
 

2
0

'
0 TRRRR TTT               (2.53) 

 

Because we know the value of this error of linearity 

we can remove it – for example by setting it into 

computer memory and subtracting it every time during 

measurement. 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.39 

An error caused by voltmeter of finite internal resistance.  
 

We can also take into account the correction when 

our measuring method exhibits error but we are able to 

determine it. For example, Figure 2.39a presents a 

voltmeter with internal resistance Rv connected to the 

source E with the internal resistance Rs. If we convert 

this circuit to the same presented in Figure 2.39b we 

see that both resistance create voltage divider and the 

voltmeter measures instead voltage E the voltage equal 

to E’: 
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Thus imperfect voltmeter introduces error E = (E’-

E)/E: 
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If resistance of the voltmeter is similar like 

resistance of source the voltmeter measures only half of 

voltage and error is about 50%. We can remove this 

error and correct the result of measurement if we know 

all the resistances (although better solution would be 

substitute this voltmeter by better one, if possible). 

b) The random uncertainty exists when we can 

diminish it by increasing the number of measurements. 

If we perform several measurements and every time we 

obtain a slightly different result (with dispersion 

exceeding assumed value) we can conclude that the 

uncertainty is random. The uncertainty of measurement 

caused by the random character depends inversely on 

the number of measurements. 

c) There are uncertainties, which we are able to 

estimate but we cannot remove. For example the 

voltmeter used previous example exhibits limited 

uncertainty described usually by the manufacturer (as 

the accuracy of scaling). The repeating of the 

measurements many times do not change this error. 

Generally this kind of uncertainty depends on the 

uncertainty of used measuring devices and can be 
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estimated based on the information enclosed by the 

manufacturers of these instruments.  

d) Another kind of uncertainties can result from the 

imperfect model of the investigated object or 

phenomenon. In the example described above (Figure 

2.39) we removed the error introduced by the 

measuring method. But if the same circuit is supplied 

by the alternating current the model of the measuring 

circuit is much more complex than that presented by 

equation (2.54). In such case we should take into 

account the parasitic capacitances with respect to the 

ground, the capacitances and inductances of resistors, 

influence of frequency, influence of external 

electromagnetic field etc. The dependence (2.54) 

should be appropriately extended to include all these 

factors to the model. 

Sometimes the model of phenomenon can be so 

complex that its application could be difficult, 

especially in industrial environment. In such case we 

can construct artificial model of the physical 

phenomenon as the result of the group agreement. For 

example, the magnetic parameter: “specific power 

losses” depends on a great number of factors – 

conditions of magnetization. It would not be reasonable 

to include all of them into the model. Therefore, the 

model of the losses has been limited to the precisely 

described one case – as this case the testing apparatus 

called the Epstein frame has been chosen. The Epstein 

frame has been very precise described in the 

international standard (EN 60404) – the method of 

preparation of the sample, the design of the apparatus, 

the measuring conditions, etc. have been established in 

details. The standardization of the measuring procedure 

guarantees that all investigators perform the same 

errorss and obtain comparable results in every 

laboratory. The results of these measurements are 

called “the Epstein losses”; in many cases being far 

from the real losses in the physical sense. 

e) And last but not least, the worst kind of 

uncertainty – the unrecognized errors. These errors are 

sometimes called the mistakes. For example, we 

measure the current using damaged ammeter. Or we 

use this ammeter in the presence of magnetic field and 

we do not know that this field exists and influences the 

measurement. We have no reason to question the 

manufacturer declaration of accuracy and greater 

number of the measurement will not help. In such case 

only the validation of the measuring procedure (by 

means of the standard device called calibrator) could be 

effective but it is not always possible. 

Figure 2.40 presents typical algorithm of evaluation 

of uncertainty. Thus the procedure of measurement 

should comprise the following steps: 

- analysis and determination of the mathematical model 

of investigated object; 

- analysis and determination of the mathematical model 

of the measuring system; 

- analysis of source of errors and determination of the 

resultant uncertainty of measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.40 

Algorithm of evaluation of uncertainty.  

 

All points are crucial for correct assessment of 

uncertainty. The authors of the GUM recommend: 

“Although this Guide provides a framework for 

assessing uncertainty, it cannot substitute for critical 

thinking, intellectual honesty and professional skill. 

The evaluation of uncertainty is neither a routine task 

nor a purely mathematical one; it depends on detailed 

knowledge of the nature of the measurand and of the 

measurement....”. 

Especially important is the first point. It should be 

emphasized that we always test the mathematical 

model of physical phenomenon or technological factor. 

As this model is closer to reality as better result of 

measurement and reversely if this model in not 

complete the measurement can be worthless. For 

example if we measure impedance for high frequency 

and do not include to our model skin effect we can 

obtain result far from true.  

It is reasonable to limit the assumed uncertainty of 

measurement to the certain useful level. The increase of 

the accuracy means higher costs – we should use more 

expensive measuring devices, the time necessary for 

measurements is longer, the qualifications of the 

mathematical model of the object 
and measuring system
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investigators should be higher. The application of 

inappropriate, too precise instruments can be the 

uncomfortable – for example when we use five-digit 

instrument for the measurement of non-stable source, 

the last digits keep blinking and are useless.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.41 

The dependence between the uncertainty and costs of measurements.  

 

Figure 2.41 presents the graph illustrating the 

relation between the costs and uncertainty. We can 

reduce costs of measuring procedure by decreasing the 

uncertainty but it is the risk that the costs of incorrect 

decisions can be larger; they can even cause dangerous 

situations. Taking this into consideration we can 

establish the optimal value of uncertainty.  

On the other hand recently even very accurate 

measuring devices are not expansive. Sometimes IC 

measuring device has performances reserved earlier for 

professional equipment. Therefore instead of time-

consuming analysis easier is to take from the shelf 

better measuring instrument.  

In some cases (health service, military industry, etc.) 

there is a need for increased accuracy. In this case the 

Guide proposes to substitute the standard uncertainty u 

by the expanded uncertainty ku. The coverage factor k 

is related to the level of confidence and typically is in 

the range 2 – 3.  

Returning to algorithm presented in Figure 2.40 the 

second step is the analysis which component exhibits 

random character. Before the analysis of uncertainty it 

is reasonable to execute the cycle of the measurements. 

If the dispersion of the results exceeds assumed value it 

means that we should perform statistical analysis of 

these results. In such case we use the procedure called 

by the Guide - type A evaluation of uncertainty. This 

kind of evaluation requires certain number of 

measurements – this number depends on the value of 

dispersion and the level of confidence.  

But in certain circumstances it is not reasonable to 

repeat the same measurements many times. For 

example, we have stable supply sources, the conditions 

of environment are also stable (due to temperature 

conditioners, electromagnetic shield and grounding 

preventing the harmful interferences), we have very 

precise measuring devices. It would be just waste of 

time and money to repeat the measurements, especially 

in industrial environment. In such case we use the 

procedure described in the Guide - type B evaluation of 

uncertainty.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.42 

An example of the presentation of the measuring results in form a 

graph. 

 

Consider the case when we perform a series of 

measurements and we obtain certain number of results 

in form of a table or a graph presented in Figure 2.42. 

We can easily analyze such set of results constructing 

histogram. The histogram can be calculated for 

instance with using simple tool in popular MS Excel 

program. Figure 2.43 shows the histogram of the data 

set presented in Figure 2.42. 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.43 

The histogram of the results of measurements presented in Fig. 2.42. 

 

On the graph of histogram, the axis x describes the 

value of obtained result while the y axis presents value 

fk describing how often such result happened. 

Analyzing the histogram we can obtain the information 

which value revealed most often – this value is 

probably the closest to the true value.  
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FIGURE 2.44 

Two examples of the histograms of the test results of magnetic 

material homogeneity (Tumanski 1998). 

 

Histogram is a very useful tool to analyze statistical 

data. Figure 2.44 presents examples of two histograms. 

They represent magnetic homogeneity of the material 

determined by scanning the magnetic field distribution 

of the selected area on investigated magnetic material 

(Tumanski 1998). We see that one of them (Figure 

2.44a) is more uniform than the other one (Figure 

2.44b), which is expressed by the slenderness of the 

histogram shape.  

 

 

 

 

 

 

 

 

 

 
 
FIGURE 2.45 

The histogram fk x of the results presented in Fig. 2.43. 
 

It is also possible to calculate the histogram, in which 

the level of the bars is equal to the Fk value 

representing the area fk x (Figure 2.45). On the basis 

of such histogram we can evaluate in which x range 

the result of measurement happened most often. 

Analyzing the shape of the histogram (for example its 

width or slenderness) we can roughly estimate the 

uncertainty of measurements.  

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.46 

The cumulative histogram of the results presented in Fig. 2.43. 

 

Another type of the histogram is presented in Figure 

2.46. This cumulative histogram informs us how often 

happened the result in the range between - and the x 

value (below 9 none result, till 11 is 100% of results).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 2.47 

The graph of the density of probability f(t) and cumulative distribution 

F(t)for the normal distribution 
12

 

 

We can present the results of series of 

measurements as the probability distribution of the 

result instead of histogram. On the y axis we describe 

the probability density f(x) of the result of 

                                                
12

 Figure 2.26 presents so called normalized functions of probability 

where t = (x-m)/  
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measurement. We can also calculate the cumulative 

distribution function F(x) as the area under the 

probability density function (Figure 2.47). The 

comparison of Figures 2.45, 2.46 and Figure 2.47 

indicates that the probability density function is related 

to the histogram for infinite number of measurements 

(continuous function) while the cumulative distribution 

function is related to cumulative histogram. Very often 

the probability density function is represented by the 

normal distribution also called Gaussian distribution. 

The example of Gaussian distribution curves are 

presented in Figure 2.47. 

The distribution function (cumulative distribution) 

describes the probability that the random variable be 

less or equal to x 
 

 xXPr)x(F                     (2.56) 

 

The probability density of function is the derivative 

of the distribution function  
 

dx

)x(dF
)x(f                           (2.57) 

 

thus 

 )Pr)( dxxXxxf           (2.58) 

 

Knowing the probability density function we can 

determine the probability that the value X is in the 

range from x1 to x2  
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and of course is 
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The normal distribution (Gaussian distribution) is 

described by the equation 
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thus it is described by two parameters: standard 

deviation  and the expected value (expectation) m.  

The expected value is the value, around which all 

random variables are extended. For a continuous 

random variable having the probability density function 

f(x) the expected value m is 
 






 dxxxf )(m                           (2.62) 

 

For the normal distribution the expected value is the 

symmetry axis of the function f(x) and for limited num-

ber n of observations xi is equal to the mean value x  
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We can determine the standard deviation  as the 

positive square root of the variance V(x) =  
2
 given by 

equation 
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The variance V(x) describes the dispersion of the 

variable around the expected value: 
 






 dxxfxxV )()()( 22 m            (2.65). 

 

The probability is equal to the area under probability 

density curve: for the  value – grey area in Figure 

2.47. For the normal distribution the probability that 

variable is equal to the expected value (in this case the 

mean value) with the dispersion equal to the standard 

deviation  is 
 

6826.0)Pr(   xxx          (2.66) 

 

Thus the probability that the result of observation is 

in the range  around the mean value (expected value) 

is 68.26%. Similarly, we can calculate that this 

probability for the dispersion  2 is 95.44% and for  

3 is 99.73%. We can say that the result of 

measurement is very close to estimated value if the 

uncertainty is 3. Therefore we sometimes say about 

3 rule as the rule of large probability.  

The standard deviation of the mean value depends on 

the number of observations n  
 

 
n

x


                                (2.67) 

 

By increasing of the number of observations we 

diminish the range of uncertainty of the mean value. 

But the component n  increases slowly with the 
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increasing of n – to decrease the standard deviation by 

10 it is necessary to increase the n by 100. Such effort 

(or waste of time) is unprofitable and therefore it is 

assumed that in typical cases the number of 

observations in the range of 20 –30 is sufficient. Of 

course it is not necessary to repeat so many 

measurements manually – usually we can include such 

repetition into computer program. 

When the number of observations is not large it is 

recommended to use the Student’s distribution (t-

distribution) instead of the normal distribution. The 

Students distribution is described by equation 
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where  = n-1 is the degrees of freedom  and  is the 

Euler function.  
 

The shape of the graph of the Student’s distribution 

is similar to the normal distribution (bell shape), but it 

is more flat and the flatness depends on the degrees of 

freedom (number of operations). Practically for the n > 

30 the student’s distribution is very close to the normal 

distribution. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.48 

The graph of the triangular (a) and rectangular (b) density of 

probability function. There are indicated the range of variable 

corresponding with standard deviation 3 of normal distribution 
 

There are also other probability density functions, for 

example rectangular (uniform) distribution or 

triangular distribution presented in Fig. 2.17. We can 

assume that in the normal distribution the standard 

uncertainty is 1/3 of the range of variable equal to 3
13

. 

Note that in the case of triangular function the  

dispersion of normal distribution corresponds to the 
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 We can assume that all measured value are in 3 range with 

sufficient large probability. 

3/1  of the range while in the case of rectangular 

function it is 6/1 . 

In the case when the resultant value is composed 

from various values Y = c1X1+c2X2+... determined with 

various probability distributions the Central Limit 

Theorem is helpful. This theorem states that the 

distribution of Y will be approximately normal with 

expected value equal to: 
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and variance is: 
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In the case of evaluation of uncertainty of type A the 

calculations are relatively simple because we use well 

known tools of statistical analysis. The case of 

evaluation of uncertainty of type B is more complex, 

because we should evaluate various sources of 

uncertainty – for this task experience, knowledge and 

even intuition is necessary.  

Relatively easy is evaluation of the uncertainty of 

typical measuring devices, because we have the 

information about the accuracy estimated by the 

manufacturer. Usually the reputable manufacturers 

enclose detailed documentation specifying all 

uncertainties. In the case of precise and expensive 

devices manufacturer can enclose the certificate of 

accuracy prepared by accredited laboratory.  

The analogue indicating instruments are very well 

described by the standards, for example EN 60051 (EN 

60051 1989). All instruments are divided into Class of 

Accuracy CL– for example 0.2, 0.5, 1, 2 etc. This class 

means that the absolute uncertainty x of all 

enumerating graduations does not exceed value 

CLxmax
14

. Thus 
 

Accuracy Class = 
max

x

x


              (2.71) 

 

Thus the absolute uncertainty is the same for all 

measured values, while the relative uncertainty is 

smallest at the end of the range and equal to CL (Figure 

2.49).  
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 Sometimes the manufacturer encloses the table of corrections to all 

enumerated graduations. 
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maxx x CL                          (2.72) 

 

while relative uncertainty is: 

maxxx
x CL

x x


                         (2.73) 

 

Thus in the middle of scale the uncertainty is 2CL 

and we should avoid measure below this point
15

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.49 

Dependence of relative uncertainty on the point on the scale of 

analogue instrument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.50 

Dependence of relative uncertainty on the reading value of digital 
instrument. 
 

The digital instruments are not standardized, but 

there is certain universally accepted custom of 

describing of the accuracy of such instruments. Usually 

the uncertainty of digital instruments is described as:  
 

 FSrdg %%                      (2.74) 
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 Similar recommendation is in a car engine – we can drive on the 

lower gear but it is not reasonable. 

which we can explain as the sum of uncertainty of 

indicated value (rdg – reading) and uncertainty of the 

range (FS – Full Scale). This absolute uncertainty is 

described using the unit of the measured value. The 

relative uncertainty is: 
 

%rdg %FS
x

rdg



                       (2.75) 

 

Thus for FS we obtain x=%rdg+%FS, but for half of 

range (rdg=1/2 FS) we obtain x=%rdg+%2FS 

(Figure 2.50). We see that although method of 

describing of uncertainty is slightly other the effect is 

very similar to those in analogue instruments . 

Why it is used so strange method of describing of 

uncertainty (instead of simply for example: uncertainty 

0.002%)? It is why because this way it is possible to 

avoid inappropriate use of measuring instrument – for 

example if we have for digit high accuracy instrument 

and we read only two digits). 

Consider case when four-digit voltmeter with the 

range 10V indicated 0.499 V and its uncertainty is 

described as  (0.05 + 0.01)% . The uncertainty of the 

result is  (0.05%499 + 0.01%10 000)mV =  1.25 

mV and the relative uncertainty is  0.25%. This 

example demonstrates importance of the use of all 

significant digits. If for example we change the range 

to 1V (if such range exists) and we obtain the result 

499.9 mV the absolute uncertainty is  (0.05%499.9 + 

0.01%1000 mV) =  0.35 mV which is related to the 

uncertainty 0.07%. Thus we improved the uncertainty 

more than three times only by changing the range of 

instrument. 

Modern measuring devices are so accurate that the 

percent unit is too large for express the uncertainty. For 

example, presentation of the uncertainty as 0.00001% 

would be inconvenient; therefore, often the description 

in ppm (ppm – parts per million – 10
-6

) is used. The 

formula (2.74) is then presented as for example (ppm 

reading + ppm range).  
 
TABLE 2.2 

Resolution of a digital measuring instrument as the dependence on the 

number of digits used. 

number of digits number of counts resolution 

3-digit instrument 1000 0.1% 
4-digit instrument 10 000 0.01% 
4½-digit instrument 20 000 0.005% 
4¾-digit instrument 50 000 0.002% 
In 4½-digit instrument the first digit can be 0 or 1 and the rest 0,1,....9 

while in the 4¾-digit instrument the first digit can be 0,1,2,3,4 and the 

rest 0,1,...9. 
 

If we do not possess the documentation of measuring 

device we can adopt its accuracy basing on number of 
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digits – assuming that the producer design this 

instrument correctly. Table 2.2 presents information 

about the resolution of various digital instruments. 

The parameters declared by producer are usually 

determined for the nominal conditions (for example 

temperature 23 C, relative humidity 40 – 60%, 

frequency 50 Hz, etc.) Sometimes the operating 

conditions are recommended (for example variation of 

the temperature T = 10C, inclinations from the 

horizontal level 5 , etc.). 

Additional problems appear when we process time 

varying signals. One of the important parameters in this 

case is the frequency bandwidth of the measuring 

instrument. Most of measuring devices exhibit limited 

bandwidth – sometimes it is limited for low frequency 

(the DC and slowly varying components are not 

detected), but it is always limited for high frequency. 

Figure 2.51 presents the specification of the 

measurement uncertainty of the popular multimeter 

34401 of Agilent for various ranges of frequency of 

measured signals.  

 

 

 

 

 

 

 

 

 
 
FIGURE 2.51 

The example of specification of the measurement uncertainties 

depending on the frequency of the measured AC signal – the 

multimeter 34401 of Agilent. 
 

The measurement of the signals at frequency other 

than acoustic range 20 Hz – 20 kHz is in general less 

accurate. It is rather difficult to eliminate the influence 

of parasitic capacities at the high frequency range. 

Above about 1 MHz the accuracy influences the 

transmission line effect and in this bandwidth special 

measuring instruments are used. In the case of analogue 

processors the bandwidth is usually defined as the 

frequency range in which the amplification factor Ku 

(or generally sensitivity coefficient K) changes no more 

than 3 dB from the defined value (often for example 

from the value determined for frequency 1 kHz).  

In the case of digital processing the main limitations 

come from the sampling frequency which according to 

the Shannon theory should be at least two times larger 

than the greatest frequency in the signal. Recently, 

there are available analogue-to-digital converters with 

sampling frequency greater than 1 GHz.  

Sometimes the limitation can be characterized by 

acceptable the CF factor (CF – Crest Factor) – the 

ratio of the peak value to the rms value of the 

waveform. For example, in the multimeter 34401 

presented above the Crest Factor of 1 – 2 causes 

additional error of 0.05% of reading, while for CF 4 –5 

this error is 0.4% of reading.  

Sometimes the information “True rms” is placed on 

the front panel of measuring instruments. It means that 

the rms value of the signal is measured according to 

definition (rms – Root Mean Square): 
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                       (2.76) 

 

The term “True rms” appeared as the reaction to the 

“non-true” measurements performed by the formerly 

universally used measuring instruments with rectifiers. 

Such instruments measure de facto the rectified average 

value, but they were scaled as rms devices under 

assumption that the dependence between these two 

values is the Form Factor = 1.11. But this condition is 

fulfilled only for pure sinusoidal waveforms, which is 

frequently not the case in typical measurements. For 

example, if the waveform is triangular the error 

resulting from the distortion is about 5.5%, while for 

rectangular waveform this error is 11%. And for pulse 

measurements this error is as large as around 50% for 

the crest factor = 4. Recently the measuring devices 

indicated as “True rms” measure the distorted signal 

with CF up to 4 without any additional errors. 

It is important to know that most laboratory 

multimeters do not measure the rms value of AC+DC 

signals. Usually the AC signals are separated from the 

input by a capacitor. Thus to obtain the rms value of 

AC+DC signal it is necessary to perform the 

measurement two times (as DC measurement and AC 

measurement) and then the resultant rms value can be 

calculated as 
 

22)( DCACDCACrms           (2.77) 

 

Currently many portable instruments are indicated as 

AC+DC. It means that these instruments correctly 

measure the AC signal with DC component. 

We often use of measuring device transducers. In this 

case all specification related to converters, as 

nonlinearity, sensitivity, zero (see Chapter 2.2) drift 

should be considered as uncertainty type B. Often 

documentation informs about accuracy assuming that 

all errors are limited to declared value.  
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The error of dynamics can be described as the 

difference between the output signal y(t) and the steady 

value yu (see Figure 2.18): 
 

ud y)t(yy                           (2.78) 

 

or as the mean square value 
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Sometimes it is convenient to analyze the error of 

dynamics not in the time domain but in the frequency 

domain. It is justified because in the case of linear 

circuit these both specifications are equivalent 

according to the Parseval rule 
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Such considered dynamics errors (see Figure 2.24) 

can be then determined as:  
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After estimation of uncertainty type A and B we can 

start to prepare uncertainty budget. The Guide 

differentiates between the variance  (an abstractive 

term) and estimate of variance s (experimental 

standard deviation) related to measurements. The 

experimental standard deviation is determined from the 

same dependence as the standard deviation (see Eq. 

6.24): 
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The uncertainty of measurement is  
 

   xsxu                              (2.83) 

 

The result of measurement can be presented as 
 

 xuxx                             (2.84) 

 

The uncertainty of measurement can be also 

presented as the expanded uncertainty u 
 

 xkuu                              (2.85) 

where k is coverage factor (2 or 3). 

Finally we calculate the resultant uncertainty 

determined using both methods 
 

)()()( 22 xuxuxu BA                    (2.86) 

 

Often the determined value is composed of many 

measurements. For example we test the electric power 

P by measure of current I with uncertainty u(I), voltage 

V with uncertainty u(V) and phase shift cos with 

uncertainty u(cos). Next we calculate this power as: 
 

P VI cos                             (2.87) 

 

Next we are interested to determine uncertainty of 

the final result – power u(P). How to aggregate these 

component uncertainties? 

When the determined value of y is function of several 

other quantities xi 
 

 1 2 ny f x ,x ...x                          (2.88) 

 

we can determine the combined uncertainty. The 

estimation of combined uncertainty is more 

complicated when component quantities xi, xj are 

mutually correlated (dependent). We can check this by 

testing the degree of correlation 
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which varies from 0 to 1 (0 means that these quantities 

are uncorrelated, while 1 means that they are 

completely correlated, i.e. xi=k xj). In the dependence 

(2.89) u(xi) u(xj) are the estimates of variances, while 

u(xi,xj) is the estimate of covariance of both quantities. 

We can determine the combined uncertainty using the 

law of propagation of uncertainty 
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The covariance of random variables can be 

determined experimentally as 
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In practice, when the component quantities are 

mutually weakly dependent we can neglect the second 

part from the dependence (2.90) and the combined 

uncertainty can be calculated as  
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If we would like to determine of the uncertainty of 

power measurement (Eq. 2.87) we should perform 

following calculation: 
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Sometimes more convenient is to operate on relative 

values of uncertainty. In such case Eq. (2.92) should be 

converted to following relation: 
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Then after calculation the combined uncertainty is 

described by much simpler relation: 
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Sometimes instead of the root of square sum we simply 

add the modulus of uncertainty 
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but such method of calculation of uncertainty can cause 

the overestimation of the combined uncertainty. The 

sum of modulus is sometimes called the maximal 

limiting uncertainty.  

When the result of a measurement is presented, 

then the form of its presentation should inform us about 

the uncertainty as well. For example, if we have 

measured the voltage as 4.565 V with uncertainty 0.1% 

(thus it is 4.5650.005) then it is meaningless to 
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 Now we can return to explanation of the equation (2.14). From the 

relation (2.12) 3

x 2

4

R
R R

R
  we can easy calculate uncertainty of 

determination of resistance Rx. By using Eq. (2.94) we obtain the 

relation (2.14)      
2 2 2

x 2 3 4R R R R      . 

present the result as for example 4.565297 V (such 

style of presentation is sometimes met, when the 

researcher used the calculator or computer to estimate 

the results). Of course, similarly incorrect is to present 

the result as 4.56 V. Generally, the accepted rule is that: 

last significant digit of result of measurement should be 

the same range as the last digit of the uncertainty.  

 

2.6 Standards of electrical values - calibration  

The measurement is always related to the standard 

unit. The standard is the realization of a given quantity 

with stated value and measurement uncertainty, used as 

a reference. Using the standard we can perform 

calibration of the measuring instrument. The 

calibration is the operation establishing the relationship 

between quantity values provided by measurement 

standards and the corresponding indications of 

measuring system, carried out under specified 

conditions and including evaluation of measurement 

uncertainty (ISO VIM 2004). 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.52 

The example of traceability ladder 

 

It is not necessary to compare our measured value 

directly with a standard because recently such 

comparison is often substitution by use of calibrated 

device. It means that producer of such measuring 

instrument or accredited laboratory guarantee that our 

instrument exhibits sufficient accuracy.  

Figure 2.52 presents the ladder of standard 

organizations. On the top there are National Standard 

Organizations theoretically equipped with the best 

testing instruments and standards. These Organizations 

have supervision on Accredited Laboratories 

authorized to calibrate measuring instruments. These 

laboratories are governed by international standard 

“ISI/IEC 17025 – General requirements for the 

competence of testing and calibration laboratories”. 

Producers of measuring instruments and companies 

where quality is tested by measuring instruments are 

obliged to periodically test and calibrate these 

instruments. 

National Standards 

Organizations

ISO 17025 Acredited

Laboratories

Company

Laboratories
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There are several national or international 

organizations equipped with the best standards 

collaborating with National Standard Organizations: 

BIMP - International Bureau of Weights and Measures 

(French: Bureau international des poids et mesures), 

NIST - National Institute of Standards and Technology, 

PTB - Physikalisch-Technische Bundesanstalt or NPL - 

National Physical Laboratory (UK).  

It is important to ensure unbroken chain between 

hierarchical standards – traceability. In this way it is 

possible to calibrate simple measuring instruments by 

laboratory instruments, these can be calibrated by high 

accuracy reference instruments or calibrators. At the 

top there are the best accuracy standards used to 

calibrate reference instruments.   

When we say that the measurement requires a 

comparison to the standard value of measured quantity 

we do not need to apply the standard of this quantity. It 

would be impossible and impractical taking into 

account the great number of various quantities. 

Therefore it is sufficient to define and reproduce the 

standard of certain number of quantities (called base 

quantities) and next to derive other quantities as the 

derivative quantities. The derivative quantities can be 

determined from the mathematical dependencies 

deduced according to the physical laws and rules (for 

example to know the resistance of 1 it is only 

necessary to know the voltage 1 V and current 1 A 

according to the Ohm’s law 1 = 1V/1A – although 

just in this case standards of all quantities: voltage, 

resistance and current are available). Basing on this 

concept it was proposed to select seven base units in 

form of the International System of Units - SI (Table 

2.3)
17

. From these seven basic units of SI we can derive 
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 The definitions of basic units are as follows:  

One meter is equal to the length of the path travelled by light in 

vacuum during a time interval of 1/299 792 458 of a second; 

One kilogram is equal to the mass of the international prototype of 

kilogram; 

One second is a time interval equal in duration to 9 192 631 770 
periods of the radiation corresponding to the transition between the 

two hyperfine levels of the ground state of the cesium-133 atom; 

One ampere is equal to constant current which, if maintained in 

straight parallel conductors of infinite length and of negligible circular 

cross-section, and placed 1 m apart in vacuum, would produce 

between these conductors a force equal to 210
-7

 N per each meter of 
length; 

One kelvin is temperature equal to a fraction 1/273.16 of the 

thermodynamic temperature of the triple point of water; 

One mole is the amount of the substance in a system, which contains 

as many elementary entities as there are atoms in 0.012 kg of carbon 

12; 

One candela is the luminous intensity, in a given direction, of a source 

that emits monochromatic radiation of frequency 54010
12

 Hz and that 

has a radiant intensity in that direction of 1/683 watt per steradian.  

other units – for example the discussed above unit of 

resistance ohm, , can be expressed as: m
2
kgs

-3
A

-2
. 

The International System of Units was adopted by 

the General Conference on Weights and Measures 

CGPM and was described in ISO Standards: ISO 1000 

– SI units and recommendations for the use of their 

multiple as of certain other units and ISO 31 – 

Quantities and units
18

.  
 

TABLE 2.3 

Base quantities and base units of SI system. 

base quantity base unit 

name name symbol 

length meter m 

mass kilogram kg 

time second s 

electric current ampere A 

thermodynamic temperature kelvin K 

amount of substance mole mol 

luminous intensity candela cd 
 

Modern standards of highest accuracy are based on 

the quantum physics. The main advantage of such 

standards is that they are related to fundamental 

physical constant and can be reconstructed without 

reference to better sources. They even can be 

transferred to other civilization because they are 

nondestructive, as based on universal physical 

principles.   

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.53 

The Josephson quantum effect as the standard of voltage, after (Ibuca 

et al 1983) 
 

The quantum Josephson effect is used to reconstruct 

the standard unit of voltage [Hamilton et al 1997, 

Kohlmann et al 2003, Benz et al 2004]. This effect 

appears at very low temperature (typically liquid 

helium 4.2 K), when certain materials (for example 

niobium) become superconductors. The super-

conducting Josephson junction consists of two thin 

superconductors separated by very thin insulator layer. 

                                                
18

 The problems of electrical standards are the subject of interest of 

following institutions: BIMP (International Bureau of Weights and 

Measures), ISO (International Organisation of Standardization) and 

IEC (International Electrotechnical Commission).  
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When Josephson junction device is irradiated by 

microwave energy in the frequency range 70 – 100 

GHz and it is biased by DC current then the voltage 

changes stepwise with the change of the junction 

current (Figure 2.53). We can determine these steps on 

the volt-ampere curve very precisely. The level of the n 

step is described by the dependence: 
 

JK

nf

e

h
nf)n(U 

2
                     (2.97) 

 

Note that the voltage depends on the very well 

defined values: h – Planck’s constant, e – electron 

charge and f – microwave frequency that we are able to 

measure  very  accurately.  The Josephson’s constant 

KJ = (2e/h) is equal to 483 597.9 GHz/V.  

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.54 

The Josephson quantum effect in underdamped junction. 

 

The main drawback of the quantum standard of 

voltage is that the output signal is relatively small and 

contains noise. For 100 GHz microwave the single step 

of voltage is about 200 mV. This signal can be 

increased by connecting many Josephson junctions in 

series. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.55 

Typical design of array junction superconducting standard of 1 V: 

layout and microline. 

Connecting of many junctions in array was 

complicated because every junction exhibited slightly 

other step current. This problem was solved by 

Lewinsen [Levinsen et al 1977] who proposed to 

underdamp the junction. The underdamped junction 

exhibits zero-crossing steps as it is presented in Figure 

2.54. Thus it was possible to design junction array with 

bias current close to zero. Such arrays available also 

commercially consist typically of 2 400 or 13900 

junctions for 1V or 10 V standards respectively (for 

electromagnetic field 75 GHz).  

Figure 2.55 presents typical design of array junction 

standard of 1V. It is design of NIST composed of 3020 

junctions. The meander shape strips create transmission 

microwave line. The junctions are created by 

deposition of niobium layer separated by oxidized 

aluminum Al2O3 layer of thickness of about several 

nm.  

Commercially available standard of 10 V of Hypres 

Inc. is composed of 20 208 Josephson junctions every 

with area 18  38 mm supported by 72 – 78 GHz 

electromagnetic wave. Operating temperature is 4.2 K 

and operating power approximately 10 mW.  Declared 

uncertainty is 0.05 ppm. It is estimated that possible is 

to construct such standard with uncertainty 10
-10

 – 1nV 

at 10 V
19

.   

Recently it can be observed effort to extend the idea 

of Josephson junction also on programmable DC 

voltage standard and AC voltage standards 

[Chevtchenko et al 2005]. Two concepts are considered 

– binary weighted arrays of junctions (this idea can be 

also useful for AD converters) and pulse driven arrays 

and next digital synthesis of arbitrary waveform and 

frequency. Unfortunately underdamped junctions 

(Figure 2.54) are hard to adapt for this purpose because 

they are hardly adjustable. Therefore designers returned 

to overdamped junctions (Figure 2.53). Fortunately 

problem of dispersion of bias currents for every 

junction is now not too dangerous because meantime 

technology and repeatability of junctions have been 

significantly improved. 

The quantum Hall effect in the superconductors can 

be used to realize the standard of the resistance. It was 

discovered by Klaus von Klitzing in 1980. The 

specially prepared GaAs heterostructure with two-

dimensional electron gas 2DEG was used as Hall 

device (Figure 2.56). When this device is placed in 

very small temperature (1 – 2K) and it is biased by the 

DC current the output Hall voltage depends on the 

magnetic field in a stepwise way (Figure 2.57). 

                                                
19

 It is worth of attention that although we have excellent standard of 

voltage in the SI system electrical units are still represented by unit of 

current. 
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FIGURE 2.56 

The quantum Hall effect device. 
 

Typical quantum Hall device [Jeckelman et al 2001, 

Witt 1998] has six or eight terminals – two for Hall 

output voltage VH , two for bias current IJ and two or 

four for voltage VJ . The voltage VJ is used to determine 

the current in the device. Moreover, the voltage VJ 

helps in determination of the step in the RH = f(B) 

characteristic, because maximum of VJ corresponds 

with each step (Figure 2.57). The Hall resistance for n
th
 

step is RH(n) = VH /IJ. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.57 

The quantum Hall effect as the standard of resistance. 

 

 The quantum Hall resistance of the n
th
 step is 

described by the dependence 
 

n

K

ne

h
nR K

H 
22

)(             (2.98) 

 

The resistance depends only on well-defined values 

(h and e) and it does not depend on the current IJ  or the 

magnetic flux density B. The von Klitzing constant KK 

was determined as 25 812.807 . Using the quantum 

resistance standard it is possible to reconstruct the 

resistance unit with uncertainty of about 10
-3 

ppm.  

The important drawback of the quantum resistance 

standard is the very large magnetic field necessary to 

obtain the quantum phenomenon – for most often used 

forth step this field is several T (T – tesla).  

A good candidate for quantum Hall device is 

grapheme because this material is inherently two-

dimensional. Indeed the first experiments are promising 

– the quantum Hall effect was detectable in room 

temperature [Zhang et al 2005, Novoselov et al 2007]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.58 

The direct current comparator used by NIST as the resistance standard 

(NIST1458 2003) 

 
 Figure 2.58 presents the commonly used  method for 

the reconstruction of the resistance standard from the 

Hall quantum resistance device (NIST1458 2003).  

In the current comparator presented in Figure 2.58 

two simultaneous balances are required – ampere-turn 

balance and voltage balance. The ampere-turn balance 

is performed automatically using the feedback circuit to 

control the slave current source (as the state of balance 

the second harmonic induced in the transformer is 

used). Thus automatically is fulfilled the condition: 
 

ppss InIn                           (2.99) 

 

The null-indicator detects the difference between the 

voltage drops on the resistances: standard Rs and 

measured Rx  
 

sspx IRIR                            (2.100) 

 

The condition of the balance is therefore: 
 

s
s

p
x R

n

n
R                             (2.101) 

 

The state of balance can be achieved by adjustment 

of the number of turns np. It enables the investigator to 

determine the measured resistance with excellent 

accuracy because the count of the number of turns is 

practically without error.  

Frequency (and time) is the physical values measured 

with the best accuracy – it is reached uncertainty on the 
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level of 10
-16

 [Bauch 2003]. According to the definition 

of the time unit one second is the duration of 9 192 631 

770 cycles of microwave light absorbed or emitted by 

the hyperfine transition of cesium-133 atoms in their 

ground state undisturbed by external fields. This idea is 

realized as the time/frequency standard. The example 

of the cesium atomic standard is presented in Fig. 2.59. 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.59 

Cesium beam atomic clock – the standard of the time/frequency. 
 

The Cesium-133 atoms are heated to the gaseous 

state in the oven. This gas is traveling as high-velocity 

beam through the gate of the magnet into the 

microwave cavity. The magnet gate is used to select 

only atoms of a particular energy state. The atoms are 

exposed in the cavity to a microwave frequency. If the 

microwave frequency matches the resonance frequency 

of cesium the atoms change their energy state. Only 

atoms which changed their energy pass through the 

second magnet gate. The detector of these atoms tunes 

the quartz oscillator to the state, at which the greatest 

number of atoms reaches the detector. It is when the 

frequency of microwave cavity is exactly 

9 192 631 770 Hz. This standard known as atomic 

clock exhibits uncertainty of about 10
-13

.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.60 

Fountain cesium atomic clock (NIST TF 2005) 

Recently the most accurate atomic clock is achieved 

by means of fountain principle (Figure 2.60). Such 

clock developed by NIST allows to obtain an 

uncertainty better than 10
-15

 (NIST TF – 2005). This 

uncertainty is better than 0.1 ns/day, which corresponds  

to a change around 1s after 30 000 000 years.  

Six infrared lasers orthogonally positioned (see 

Figure 2.60) in the vacuum chamber push the cesium 

atoms into a ball. In this process the lasers cool the 

atoms to the temperature a few millionths of a degree 

above absolute zero and reduce their thermal velocity 

to a few centimeters per second. 

Vertical laser tosses the ball upward and then all the 

lasers are turned off. Under the influence of gravity the 

ball falls back through the microwave cavity. During 

this trip the atoms interact with the microwave signal. 

When the ball leaves the cavity another laser beam is 

directed onto the ball. Those atoms, whose states were 

altered, emit fluorescence sensed by detector. This 

process is repeated many times for various microwave 

frequency and the frequency that causes the maximum 

of fluorescence is the cesium resonance. 

The superconducting quantum device SC SQUID 

[Tumanski 2011] convert external magnetic field in 

form of sinusoid of the period 0: 
 

15

0

h
2.067833667 10 Wb

2e
         (2.102) 

 

We see that also magnetic unit (magnetic flux) is 

directly related to fundamental physical constant. But 

this unit is too small and SQUID device too complex to 

use it as standard of magnetic field. The SQUID is 

commonly used for measurement of extremely small 

magnetic fields (for example in biomagnetism) and for 

calibration of magnetometers usually is used other 

physical phenomenon – magnetic resonance [Weyand 

2001, Park et al 2005].  

The resonance frequency f0 depends on magnetic 

field B: 
 

0f B                            (2.103) 

 

and the gyromagnetic ratio  is known with high 

accuracy. For proton 
1
H resonance it is: 

 

42.5760812 MHz / T        (2.104) 

 

For high magnetic field resonance a deuterons 
2
H can 

be used with gyromagnetic ratio: 
 

6.535692 MHz / T         (2.105) 
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For weak magnetic field the electron resonance can 

be used with gyromagnetic ratio for 
4
He: 

 

28.02468 GHz / T               (2.106) 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.61 

The nuclear magnetic resonance magnetometer. 
 

Figure 2.61 presents typical NMR magnetometer 

principle. The resonance is detected by the sensing coil 

wound on the protons rich sample (for example with 

water). Frequency is tuned by the second coil 

perpendicular to sensing coil and to measured magnetic 

field. Sometimes additional modulation field is added 

to measured field – this way the state of resonance is 

detected as the largest second harmonic of signal of 

modulated frequency (Figure 2.61). 

The market available magnetometer PT2026 of 

Metrolab enables measurement of magnetic field in 

range 0.2 – 20 T (in 10 subranges) with uncertainty 5 

ppm and resolution 0.01 ppm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.62 

The functional block diagram of high precision voltage reference 

model AD588 of Analog Devices. 

 

Beside described above the standards based on 

physical phenomena and physical constants in 

laboratories are used much simple and cheaper material 

references – simply prepared with high accuracy 

voltage source, resistors, capacitors etc. 

Fig. 2.62 presents the functional block diagram of the 

voltage reference model AD588 of Analog Devices. 

This reference is designed with the accuracy suitable 

for 12-bit digital processing without any additional 

trimming elements. For better accuracy the trimming 

potentiometers can be used to adjust gain and balance.  

The reference consists of precise laser trimmed Zener 

diode source and three additional amplifiers. It is 

possible to obtain the output voltage +5 V, -5 V or 10 V 

with uncertainty less than 1 mV, temperature zero drift 

1.5 ppm/K and noises 6 mV p-p in the bandwidth 0.1 – 

10 Hz. The stability of the output voltage is better than 

15 ppm/1000 hours. In the user notes (AD 2005) there 

are described among others the methods of application 

of this reference source to bridge circuit supply, in 

order to obtain precision current source or to excitation 

of the resistive temperature detector (sensor) RTD. 

Thus it is possible to obtain relatively cheap and useful 

standard reference voltage with the voltage uncertainty 

about 0.01%, suitable for many measuring purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.63 

An example of the standard resistor – model 5615 of Tinsley (Tinsley 

2005) (permission of Tinsley Precise Instruments). 

 

The standards of resistance are manufactured as the 

precise resistors prepared as the wire or strip wound on 

the porcelain cylinder. Such resistor is placed usually in 

a shielded housing. The resistance standard is usually 

equipped with four terminals: two (larger) terminals are 

used for the current excitation and second two (smaller) 

ones are used as the voltage (potential) terminals 

(Figure 2.63).  

There are certain materials suitable for precise 

resistors manufacturing – they should exhibit large 

resistivity and very small dependence of the 

temperature. One of the most popular is manganin 

(alloy of 84% Cu, 12% Mn, 4% Ni) with resistivity  = 

0.42 mm and temperature coefficient T = (0.5 – 2) 

10
-5

/K (for comparison pure copper exhibits the 
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temperature coefficient T = 410
-3

/K). Another 

material used for precise resistors preparation is the 

Evanohm (75% Ni, 20% Cr, 2.5% Al, 2.5% Cu) with 

resistivity  = 1.2 mm and excellent temperature 

properties (T less than 10
-6

/K). An important 

requirement for resistive materials is negligible 

thermoelectric voltage in relation to copper.  

 

 

 

 

 

 

 

 

 
FIGURE 2.64 

The principle of bifilar winding. 

 

The resistors are wound bifilarly which enables users 

to obtain a resistor practically without the inductance. 

The bifilar winding (Figure 2.64) is performed in such 

a way that in adjacent wires the currents are in the 

opposite directions and therefore the magnetic fields 

compensate each other. The capacitance of standard 

resistor is very small due to special design. Although 

standard resistors are with negligible inductance and 

capacitance usually they are used for DC circuits. For 

AC applications special kind of resistors (indicated 

DC/AC resistor) can be used but in the bandwidth 

limited to about 1 kHz.  

Standards resistors available on the market exhibit 

typical uncertainty of 0.5 – 10 ppm, long term stability 

of about 2 ppm/year and temperature stability of about 

2 ppm/C.  

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.65 

An example of the resistor decade box. 

 

For everyday applications sometimes more usable 

can be adjustable resistor decade box. In such resistor 

is it possible to set desired value of resistance in the 

decade sequence: x1000 +  x100 + x10 +...... 

Currently, there are available resistors with adjustable 

resistance in range 1 m – 100 M. The smallest step 

is 1 m. The uncertainty of the resistor decade boxes is 

typically of 0.01%. It should be noted that often such 

uncertainty is attainable for the total resistance of the 

resistor and with decreasing of the decade step it 

gradually increases (for example: R/step 0.001  - 4%, 

0.01  - 2%, 0.1  - 0.4%, 1  - 0.1%, 10  - 0.04%, 

the rest of resistors 0.01% (IET Labs 2005). Fig. 2.65 

presents the typical design of resistor decade box. 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.66 

The standard of capacitance – calculable capacitor of Thompson-

Lampard. 

 

Thompson and Lampard proposed the standard of 

capacity based on electrostatic theory [Thomson et al 

1956]. The capacitor proposed by Thompson and 

Lampard consists of four metal cylinder bars arranged 

in a square and surrounded by a cylinder movable 

shield device (Figure 2.66). The capacitance of such 

capacitors can be estimated from the following 

dependence 
 

7

2 2

ln2 l
C 10

4 cp
                       (2.107) 

 

Thus, we can calculate the capacitance with very 

small uncertainty because it depends only on the 

velocity of light c (which we know very precisely) and 

on the length l. And the length we are also able to 

measure with very small uncertainty – using the 

interference methods. That is why we are able to 

determine such capacitance with uncertainty less than 

10
-2

 ppm. The main drawback of the air standard 

capacitance is its relatively small capacitance – only 

1.95354904 pF/m.  

It is possible to transfer the value of calculated 

capacitor to standards of other values – for example 

standard resistance (by comparison of both standards 

using special bridge circuit) [Jeffery 1997]. The 

Thompson-Lampard capacitor is an example of so 

called calculable standards. It means that based on 

theory we are able to determine capacity, inductivity or 

other values of well-defined geometry.   
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FIGURE 2.67 

The air-cored coil as the calculable standard of inductance. 

 

Theoretically also inductivity can be calculable 

standard. For example inductivity of the air core coil 

with n turns, radius r and length l  is: 
 

7
222

10
4 

l

rn
L

p
                     (2.108) 

 

But due to finite value of the resistance it is 

practically not possible to obtain the ideal inductance 

standard. Also, it is not possible to eliminate the self-

capacitance of the coil. Therefore the best solution is to 

construct coil and next to determine its inductance by 

reference meter. The inductance is usually described 

for defined value of frequency, most often for 1 kHz. 

 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2.68 

The Helmholtz coil as a standard of magnetic field. 
 

As a standard of magnetic field a coil system known 

as a Helmholtz coil is used. For a special geometry 

design (distance between coils equal to their radius) we 

obtain the magnetic field uniform and the value of this 

field in the center depends only on dimension and 

current: 
 

nI
H 0.7155

r
                          (2.109) 

It is relative easy to obtain standard value of 

frequency. As the standard of frequency we can use the 

quartz oscillator. Appropriately prepared quartz crystal 

can exhibit the stability of resonance frequency better 

than 10
-8

/year. Unfortunately this frequency depends 

on the temperature; therefore it is necessary to use the 

thermostat. It is very convenient that the standard 

frequency can be transmitted by the radio. The 

frequency standard, model 910R of Fluke controlled by 

the satellite signal (cesium atomic standard in the GPS 

system) enables users to obtain the frequency with the 

stability better than 10
-12

/24 hours. 

There are also special digital measuring instruments 

with extremely small uncertainty. Such instruments can 

be used as the working standards. For example 

reference multimeter model 8508 of Fluke enables to 

measure the DC voltage with uncertainty 

(0.7+0.5)ppm, direct current with uncertainty 

(6+2)ppm, AC voltage with uncertainty (50+10)ppm, 

AC current with uncertainty (200+100)ppm and the 

resistance with uncertainty (1+0.25)ppm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.69 

Calibrator model 5520 of Fluke (Fluke 2005) (permission of Fluke 
Corporation). 

 

As the real working standards the measuring 

instruments called calibrators can be used. Such 

instruments can deliver the standard signals or values 

enabling to scale other measuring devices. As an 

example we can consider the High Performance Multi-

Product Calibrator model 5520 of Fluke presented in 

Figure 2.69. 

The performances of Fluke calibrator are presented 

in Table 2.4. This calibrator consists of two 

independent standard sources of DC and AC voltages 

or currents with controlled frequency and phase 
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between them (for calibration of power meters and 

energy meters). Additionally calibrator can work as the 

standard resistance, inductance, capacitance and 

temperature (for modelling of thermoresistors or 

thermocouples). Thus this calibrator can deliver the 

reference values formerly available only by the high 

quality standards. 

 
TABLE 2.4 

The performances of calibrator 5520 model of Fluke. 

Functions Ranges Uncertainty 

(95% 
1 year) 

DC voltage 0 -  ±1020 V 12 ppm 

AC voltage, 10 Hz - 500 kHz 1mV - 1020 V 120 ppm 

DC current 0 - ±20,5 A 100 ppm 
AC current, 10 Hz - 30 kHz 29 mA - 20,5 A 600 ppm 

Resistance 0 - 1100 M 28 ppm 

Capacitance  0,19 nF - 110 mF 0.25% 
Phase between AC signals 0 -  ± 179,99 ±0.07 

Frequency  0,01 Hz - 2 MHz 25 ppm 

DC power 10,9mW-20,5 kW 0.023% 

AC power 10,9mW- 20,5 kW  0.08% 

Thermocouple -250C - 2316C 0.14C 

Thermoresistor -200C - 630C 0.03C 

 

 

References 

Bauch A., 2003, Caesium atomic clocks: functions, 

performances and applications, Meas. Sc. Technol., 14, 

1159-1173 

Bez S.P., Hamilton C.A., 2004, Application of the Josephson 

effect to voltage metrology, Proc IEEE, 92, 1617-1629 

Chevtchenko O.A., et al, 2005, Realization of a quantum 

standard for AC voltage: overview of a European 

Research Project, IEEE Trans. Instr. Meas., 54, No.2, 

628-631 

Fraden J., 2003, Handbook of modern sensors, Springer 

Hagel R., Zakrzewski J., 1984, Dynamic measurements (in 

Polish), WNT 

Hamilton C.A., Burroughs J., Benz S.P., 1997, Josephson 

voltage standard – a review, IEEE Trans. Appl. 

Superconductivity, 7, 3756-3761 

Jeckelmann B., Jeanneret B., 2001, The quantum Hall effect 

as an electrical resistance standard, Rep. Prog. Phys., 64, 

1603-1655 

Kester W., 2005, The data conversion handbook, Newnes 

Kohlmann J., Behr R., Funck T., 2003, Josephson voltage 

standards, Meas. Sc. Technol., 14, 1216-1228 

Levinsen M.T., Chiao R.Y., Feldman M.J., Tucker B.A., 

1977, An inverse AC Josephson effect voltage standard, 

Appl. Phys., Lett., 31, 776 

Maloberti F., 2007, Data converters, Springer 

Manabendra Bhuyan, 2011, Intelligent instrumentation, CTC 

Press 

NIST 1458 2003 NIST Measurement Service for DC Standard 

Resistors, NIST Technical Note 1458 

Novoselov K.S. et al, 2007, Room temperature quantum Hall 

effect in graphene, Science, 315, No. 5817, 1739 

Pallas Areny R., Webster J.G, 2001, Sensors and signal 

conditioning, John Wiley & Sons 

Park P.G., Kim Y.G., Shifrin V.Y., 2005, Maintenance  of 

magnetic flux density standards on the basis of proton 

gyromagnetic ratio at KRISS, IEEE Trans. Instr. Meas., 

54, No.2, 734-737 

Van Putten A.F.P., 1996, Electronic measurement systems, 

IOP Publishing 

Weyand K., 2001, Magnetic field standards – trace to the 

maintained units, Int. J. Apl. Electromagnetism and 

Mechanics, 13, 195-202 

Witt T.J., 1998, Electrical resistance standards and the 

quantum Hall effect, Rev. Sc. Instr., 69, No.8, 2823-2843 

Zhang Y., Tan Y.W., Stormer H.L., 2005, Experimental 

observation of the quantum Hall effect and Berry’s phase 

in grapheme, Nature, 438, 201-204 

 

 

 


